Skip to main content

Acoustic Radiation Force Optical Coherence Elastography

  • Chapter
  • First Online:
Multimodality Imaging
  • 805 Accesses

Abstract

Mechanical properties, such as the elasticity and viscosity, are often major indicators of diseases. Over the years, tissue mechanical properties have been demonstrated to be an early indicator for cardiovascular disease. Mechanical imaging technologies have been quickly evolving with a goal to effectively diagnose coronary artery disease and atherosclerosis in their early stages. By combining the advantages of acoustic and optical properties, acoustic radiation force optical coherence elastography (ARF-OCE) has become an imaging tool with a high potential for translation into clinics. In this chapter, we review the principles of OCE and describe the development of ARF-OCE systems for imaging and characterization of atheromatous plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, Pohle K et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound. Circulation 109(1):14–17

    Article  PubMed  Google Scholar 

  • Ahmad A, Huang P-C, Sobh NA, Pande P, Kim J, Boppart SA (2015) Mechanical contrast in spectroscopic magnetomotive optical coherence elastography. Phys Med Biol 60(17):6655

    Article  PubMed  PubMed Central  Google Scholar 

  • Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, Vucic E et al (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Nat Acad Sci 104(3):961–966

    Article  CAS  Google Scholar 

  • Baldewsing RA, Schaar JA, de Korte CL, Mastik F, Serruys PW, van der Steen AF (2004a) Intravascular ultrasound elastography: a clinician’s tool for assessing vulnerability and material composition of plaques. Stud Health Technol Inform 113:75–96

    Google Scholar 

  • Baldewsing RA, de Korte CL, Schaar JA, Mastik F, van der Steen AFW (2004b) Finite element modeling and intravascular ultrasound elastography of vulnerable plaques: parameter variation. Ultrasonics 42(1):723–729

    Article  PubMed  Google Scholar 

  • Baldewsing RA, de Korte CL, Schaar JA, Mastik F, van der Steen AFW (2004c) A finite element model for performing intravascular ultrasound elastography of human atherosclerotic coronary arteries. Ultrasound Med Biol 30(6):803–813

    Article  Google Scholar 

  • Baldewsing RA, Mastik F, Schaar JA, Serruys PW, van der Steen AFW (2005) Robustness of reconstructing the Young’s modulus distribution of vulnerable atherosclerotic plaques using a parametric plaque model. Ultrasound Med Biol 31(12):1631–1645

    Article  Google Scholar 

  • Baldewsing R, Schaar J, Mastik F, van der Steen A (2006) Atherosclerosis, large arteries and cardiovascular risk, vol 44. Karger Publishers, pp 35–61

    Google Scholar 

  • Catheline S, Thomas J-L, Wu F, Fink MA (1999) Diffraction field of a low frequency vibrator in soft tissues using transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 46(4):1013–1019

    Article  CAS  Google Scholar 

  • Catheline S, Gennisson J-L, Delon G, Fink M, Sinkus R, Abouelkaram S, Culioli J (2004) Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J Acoust Soc Am 116(6):3734–3741

    Article  CAS  PubMed  Google Scholar 

  • Chai C-K, Speelman L, Oomens CWJ, Baaijens FPT (2014) Compressive mechanical properties of atherosclerotic plaques—indentation test to characterise the local anisotropic behaviour. J Biomech 47(4):784–792

    Article  PubMed  Google Scholar 

  • Chen S, Fatemi M, Greenleaf JF (2004) Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am 115(6):2781–2785

    Article  PubMed  Google Scholar 

  • Chen Z, Milner TE, Dave D, Nelson JS (1997a) Optical Doppler tomographic image of fluid flow velocity in highly scattering media. Opt Lett 22(1):64–66

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Milner TE, Srinivas S, Malekafzali A, Wang X, Van Gemert MJC, Nelson JS (1997b) Imaging in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22(14):1119–1121

    Google Scholar 

  • Cheruvu PK, Finn AV, Gardner C, Caplan J, Goldstein J, Stone GW, Virmani R, Muller JE (2007) Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol 50(10):940–949

    Article  PubMed  Google Scholar 

  • Cook S, Ladich E, Nakazawa G, Eshtehardi P, Neidhart M, Vogel R, Togni M et al (2009) Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120(5):391–399

    Article  PubMed  Google Scholar 

  • Dariush M, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR et al (2016) Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133(4):447

    Google Scholar 

  • de Korte CL, van der Steen AFW, Céspedes EI, Pasterkamp G (1998) Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound Med Biol 24(3):401–408

    Google Scholar 

  • de Korte CL, van der Steen AFW, Céspedes EI, Pasterkamp G, Carlier SG, Mastik F, Schoneveld AH, Serruys PW, Bom N (2000) Characterization of plaque components and vulnerability with intravascular ultrasound elastography. Phys Med Biol 45(6):1465

    Article  PubMed  Google Scholar 

  • de Korte CL, Sierevogel MJ, Mastik F, Strijder C, Schaar JA, Velema E, Pasterkamp G, Serruys PW, van der Steen AFW (2002) Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo A Yucatan pig study. Circulation 105(14):1627–1630

    Article  PubMed  Google Scholar 

  • Diaz-Sandoval LJ, Bouma BE, Tearney GJ, Jang I-K (2005) Optical coherence tomography as a tool for percutaneous coronary interventions. Catheter Cardiovasc Interv 65(4):492–496

    Article  PubMed  Google Scholar 

  • Ebenstein DM, Coughlin D, Chapman J, Li C, Pruitt LA (2009) Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J Biomed Mater Res, Part A 91(4):1028–1037

    Article  CAS  Google Scholar 

  • Evans A, Whelehan P, Thomson K, McLean D, Brauer K, Purdie C, Jordan L, Baker L, Thompson A (2010) Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 12(6):1

    Article  CAS  Google Scholar 

  • Fujimoto JG (2001) Optical coherence tomography. Comptes Rendus de l’Académie des Sciences-Series IV-Physics 2(8):1099–1111

    CAS  Google Scholar 

  • Gennisson JL, Cornu C, Catheline S, Fink M, Portero P (2005) Human muscle hardness assessment during incremental isometric contraction using transient elastography. J Biomech 38(7):1543–1550

    Article  PubMed  Google Scholar 

  • Greenleaf JF, Fatemi M, Insana M (2003) Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 5(1):57–78

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Aglyamov SR, Li J, Singh M, Wang S, Vantipalli S, Chen W, Liu C-h, Twa MD, Larin KV (2015) Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation. J Biomed Opt 20(2):020501

    Article  PubMed Central  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  • He Y, Qu Y, Zhu J, Zhang Y, Saidi A, Ma T, Zhou Q, Chen Z (2019) Confocal shear wave acoustic radiation force optical coherence elastography for imaging and quantification of the in vivo posterior eye. IEEE J Sel Top Quantum 25(1):7200107

    Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR et al (1991) Optical coherence tomography. Science (New York, NY) 254(5035):1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki J, Hasegawa H, Kanai H, Ichiki M, Tezuka F (2006) Tissue classification of arterial wall based on elasticity image. Jpn J Appl Phys 45(5S):4732

    Article  CAS  Google Scholar 

  • Kawasaki M, Takatsu H, Noda T, Sano K, Ito Y, Hayakawa K, Tsuchiya K et al (2002) In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 105(21):2487–2492

    Article  PubMed  Google Scholar 

  • Kennedy BF, Kennedy KM, Oldenburg AL, Adie SG, Boppart SA, Sampson DD (2015) Optical coherence elastography. In: Optical coherence tomography: technology and applications, pp 1007–1054

    Chapter  Google Scholar 

  • Khalil AS, Chan RC, Chau AH, Bouma BE, Kaazempur Mofrad MR (2005) Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue. Ann Biomed Eng 33(11):1631–1639

    Article  PubMed  Google Scholar 

  • LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94(5):932–938

    Article  PubMed  Google Scholar 

  • Li X, Li J, Jing J, Ma T, Liang S, Zhang J, Mohar D et al (2014a) Integrated IVUS-OCT imaging for atherosclerotic plaque characterization. IEEE J Sel Topics Quantum Electron 20(2):196–203

    Google Scholar 

  • Li J, Li X, Mohar D, Raney A, Jing J, Zhang J, Johnston A et al (2014b) Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC: Cardiovasc Imaging 7(1):101–103

    PubMed  Google Scholar 

  • Liang X, Oldenburg AL, Crecea V, Chaney EJ, Boppart SA (2008) Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt Express 16(15):11052–11065

    Article  PubMed  Google Scholar 

  • Liang X, Adie SG, John R, Boppart SA (2010) Dynamic spectral-domain optical coherence elastography for tissue characterization. Opt Express 18(13):14183–14190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78(5):1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb Vasc Biol 14(2):230–234

    Article  CAS  Google Scholar 

  • Manapuram RK, Aglyamov SR, Monediado FM, Mashiatulla M, Li J, Emelianov SY, Larin KV (2012) In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. J Biomed Opt 17(10):1005011–1005013

    Article  Google Scholar 

  • Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, Felmlee JP, Greenleaf JF, Ehman RL (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5(4):237–254

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR et al (2016) Heart disease and stroke statistics—2016 update. Circulation (2005)

    Google Scholar 

  • Nguyen T-M, Song S, Arnal B, Wong EY, Huang Z, Wang RK, O’Donnell M (2014) Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography. J Biomed Opt 19(1):016013

    Article  PubMed Central  Google Scholar 

  • Nightingale K, McAleavey S, Trahey G (2003) Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 29(12):1715–1723

    Article  Google Scholar 

  • O’Donnell M, Skovoroda AR, Shapo BM, Emelianov SY (1994) Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 41(3):314–325

    Article  Google Scholar 

  • Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134

    Article  CAS  PubMed  Google Scholar 

  • Prati F, Arbustini E, Labellarte A, Dal Bello B, Sommariva L, Mallus MT, Pagano A, Boccanelli A (2001) Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries. Heart 85(5):567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi W, Chen R, Chou L, Liu G, Zhang J, Zhou Q, Chen Z (2012) Phase-resolved acoustic radiation force optical coherence elastography. J Biomed Opt 17(11):110505

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi W, Li R, Ma T, Li J, Kirk Shung K, Zhou Q, Chen Z (2013) Resonant acoustic radiation force optical coherence elastography. Appl Phys Lett 103(10):103704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi W, Li R, Ma T, Kirk Shung K, Zhou Q, Chen Z (2014) Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer. Appl Phys Lett 104(12):123702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qu Y, Ma T, He Y, Zhu J, Dai C, Yu M, Huang S et al (2016) Acoustic radiation force optical coherence elastography of corneal tissue. IEEE J Sel Topics Quantum Electron 22(3):1–7

    Article  Google Scholar 

  • Qu Y, Ma T, He Y, Yu M, Zhu J, Miao Y, Dai C et al (2017) Miniature probe for mapping mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography. Sci Rep 7(1):4731

    Google Scholar 

  • Qu Y, He Y, Zhang Y, Ma T, Zhu J, Miao Y, Dai C, Zhou Y, Xin Y, Silverman RH, Humayun M, Zhou Q, Chen Z (2018) In-vivo elasticity mapping of retinal layers using synchronized acoustic radiation force optical coherence elastography. Invest Ophthalmol Vis Sci 59(1):455–461

    Google Scholar 

  • Razani M, Mariampillai A, Sun C, Luk TWH, Yang VXD, Kolios MC (2012) Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms. Biomed Opt Express 3(5):972–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogowska J, Patel NA, Fujimoto JG, Brezinski ME (2004) Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90(5):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  • Schaar JA, de Korte CL, Mastik F, Strijder C, Pasterkamp G, Boersma E, Serruys PW, van der Steen AFW (2003) Characterizing vulnerable plaque features with intravascular elastography. Circulation 108(21):2636–2641

    Article  PubMed  Google Scholar 

  • Sherman CT, Litvack F, Grundfest W, Lee M, Hickey A, Chaux A, Kass R et al (1986) Coronary angioscopy in patients with unstable angina pectoris. New England J Med 315(15):913–919

    Article  CAS  PubMed  Google Scholar 

  • Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, Fink M (2005a) Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med 53(2):372–387

    Article  CAS  PubMed  Google Scholar 

  • Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M (2005b) Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging 23(2):159–165

    Article  PubMed  Google Scholar 

  • Sun C, Standish B, Yang VXD (2011) Optical coherence elastography: current status and future applications. J Biomed Opt 16(4):043001–043001

    Article  PubMed  Google Scholar 

  • Takano M, Mizuno K, Okamatsu K, Yokoyama S, Ohba T, Sakai S (2001) Mechanical and structural characteristics of vulnerable plaques: analysis by coronary angioscopy and intravascular ultrasound. J Am Coll Cardiol 38(1):99–104

    Article  CAS  PubMed  Google Scholar 

  • van Soest G, Mastik F, de Jong N, van der Steen AFW (2007) Robust intravascular optical coherence elastography by line correlations. Phys Med Biol 52(9):2445

    Article  PubMed  Google Scholar 

  • Virmani R, Burke AP, Kolodgie FD, Farb A (2003) Pathology of the thin-cap fibroatheroma. J Intervent Cardiol 16(3):267–272

    Article  PubMed  Google Scholar 

  • Walsh MT, Cunnane EM, Mulvihill JJ, Akyildiz AC, Gijsen FJH, Holzapfel GA (2014) Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J Biomech 47(4):793–804

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Larin KV (2014) Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett 39(1):41–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Larin KV (2015) Optical coherence elastography for tissue characterization: a review. J Biophotonics 8(4):279–302

    Article  PubMed  Google Scholar 

  • Wang RK, Ma Z, Kirkpatrick SJ (2006) Tissue doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl Phys Lett 89(14):144103

    Article  CAS  Google Scholar 

  • Wang RK, Kirkpatrick S, Hinds M (2007) Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl Phys Lett 90(16):164105

    Article  CAS  Google Scholar 

  • Waxman S, Ishibashi F, Muller JE (2006) Detection and treatment of vulnerable plaques and vulnerable patients novel approaches to prevention of coronary events. Circulation 114(22):2390–2411

    Article  PubMed  Google Scholar 

  • Xu X, Zhu J, Chen Z (2016) Dynamic and quantitative assessment of blood coagulation using optical coherence elastography. Sci Rep 6

    Google Scholar 

  • Yamakoshi Y, Sato J, Sato T (1990) Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans Ultrason Ferroelectr Freq Control 37(2):45–53

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, Edris A et al (2011) Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt 16(6):060505–060505

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Rao B, Yu L, Chen Z (2009) High-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Opt Lett 34(21):3442–3444

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson JS (2000a) Phase resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25(2):114–116

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson JS (2000b) Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt Lett 25(18):1358–1360

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Qu Y, Ma T, Li R, Du Y, Huang S, Kirk Shung K, Zhou Q, Chen Z (2015) Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method. Opt Lett 40(9):2099–2102

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qu, Y., He, Y., Ma, T., Zhou, Q., Chen, Z. (2020). Acoustic Radiation Force Optical Coherence Elastography. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics