Skip to main content

Intravascular Dual-Modality Imaging (NIRF/IVUS, NIRS/IVUS, IVOCT/NIRF, and IVOCT/NIRS)

  • Chapter
  • First Online:
Multimodality Imaging
  • 831 Accesses

Abstract

Coronary artery disease (CAD) is the leading cause of global mortality. Vulnerable atherosclerotic plaque, which is composed of a large lipid-rich necrotic core (NC) infiltrated with abundant macrophages and a thin fibrous cap, is widely recognized to be the main cause of underlying acute coronary artery disease. Dual-modality imaging technologies are valuable tools that are able to provide both structure and molecular contrast for characterization and quantification of cardiovascular tissue and have shown the improved capability of diagnosis of cardiovascular disease. This chapter outlines several representative dual-modality intravascular imaging systems which combine IVOCT or IVUS with NIRS or NIRF imaging technologies. In addition, the in vivo and ex vivo experimental results obtained by these dual modality imaging systems are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abran M, Stahli BE, Merlet N, Mihalache-Avram T, Mecteau M, Rheaume E, Busseuil D, Tardif JC, Lesage F (2015) Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits. Biomed Opt Express 6(10):3989–3999. https://doi.org/10.1364/BOE.6.003989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benni PB, Chen B, Amory D, Li JKJ (1995) A novel near-infrared spectroscopy (NIRS) system for measuring regional oxygen saturation. In: Proceedings of the IEEE 21st annual Northeast bioengineering conference, 105–107. https://doi.org/10.1109/nebc.1995.513751

  • Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114(12):1852–1866. https://doi.org/10.1161/CIRCRESAHA.114.302721

    Article  CAS  PubMed  Google Scholar 

  • Brezinski ME, Weissman N, Tearney GJ, Boppart SA, Bouma B, Swanson E, Fujimoto JG (1996) High resolution intraarterial imaging with optical coherence tomography. In: Alfano RR, Fujimoto JG (eds), pp 200–202

    Google Scholar 

  • Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, Weyman AE, Swanson EA, Southern JF, Fujimoto JG (1997) Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77(5):397–403

    Article  CAS  Google Scholar 

  • Brilakis ES, Banerjee S (2015) How to detect and treat coronary fibroatheromas the synergy between IVUS and NIRS. Jacc-Cardiovasc Imag 8(2):195–197. https://doi.org/10.1016/j.jcmg.2014.11.009

    Article  Google Scholar 

  • Chen QQ, Liu XD, Liu WQ, Jiang S (2011) Near infrared reflectance spectroscopy (NIRS): a novel approach to reconstructing historical changes of primary productivity in Antarctic Lake. Spectrosc Spect Anal 31(10):2688–2691. https://doi.org/10.3964/j.issn.1000-0593(2011)10-2688-04

    Article  CAS  Google Scholar 

  • Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, Tearney GJ (2013) Optical coherence tomography–near infrared spectroscopy system and catheter for intravascular imaging. Opt Express 21(25):30849–30858. https://doi.org/10.1364/OE.21.030849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer T, Gemeinhardt I, Wagner S, Stieglitz DV, Schnorr J, Hermann KG, Ebert B, Petzelt D, Macdonald R, Licha K, Schirner M, Krenn V, Kamradt T, Taupitz M (2006) Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol 13(1):4–13. https://doi.org/10.1016/j.acra.2005.07.010

    Article  PubMed  Google Scholar 

  • Fleming CP, Eckert J, Halpern EF, Gardecki JA, Tearney GJ (2013) Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed Opt Express 4(8):1269–1284. https://doi.org/10.1364/Boe.4.001269

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical Coherence Tomography. Science 254(5035):1178–1181

    Article  CAS  Google Scholar 

  • Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609

    Article  Google Scholar 

  • Kilic ID, Caiazzo G, Fabris E, Serdoz R, Abou-Sherif S, Madden S, Moreno PR, Goldstein J, Di Mario C (2015) Near-infrared spectroscopy-intravascular ultrasound: scientific basis and clinical applications. Eur Heart J-Card Img 16(12):1299–1306. https://doi.org/10.1093/ehjci/jev208

    Article  Google Scholar 

  • Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, Finn AV, Virmani R (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16(5):285–292

    Article  CAS  Google Scholar 

  • Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, Park K, Oh WY, Yoo H, Kim JW (2014) Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv 7(4):560–569. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001498

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yin J, Hu C, Zhou Q, Shung KK, Chen Z (2010) High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl Phys Lett 97(13):133702. https://doi.org/10.1063/1.3493659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ma T, Jing J, Zhang J, Patel PM, Kirk Shung K, Zhou Q, Chen Z (2013) Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. J Biomed Opt 18(10):100502. https://doi.org/10.1117/1.JBO.18.10.100502

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Li JW, Jing J, Ma T, Liang SS, Zhang J, Mohar D, Raney A, Mahon S, Brenner M, Patel P, Shung KK, Zhou QF, Chen ZP (2014) Integrated IVUS-OCT Imaging for Atherosclerotic Plaque Characterization. IEEE J Sel Top Quant Electron 20(2). Artn 7100108. https://doi.org/10.1109/jstqe.2013.2274724

    Article  Google Scholar 

  • Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, He Y, Shung KK, Zhou Q, Patel PM, Chen Z (2015) Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep 5:18406. https://doi.org/10.1038/srep18406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Jing J, Heidari E, Zhu J, Qu Y, Chen Z (2017a) Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 Micron Swept-Source Laser. Sci Rep 7 (1):14525. https://doi.org/10.1038/s41598-017-15326-4

  • Li Y, Jing J, Qu Y, Miao Y, Zhang B, Ma T, Yu M, Zhou Q, Chen Z (2017b) Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed Opt Express 8(2):1036–1044. https://doi.org/10.1364/BOE.8.001036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madder RD, Steinberg DH, Anderson RD (2013) Multimodality direct coronary imaging with combined near-infrared spectroscopy and intravascular ultrasound: Initial US experience. Catheter Cardio Inte 81(3):551–557. https://doi.org/10.1002/ccd.23358

    Article  Google Scholar 

  • Moreno PR, Muller JE (2002) Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr Opin Cardiol 17(6):638–647

    Article  Google Scholar 

  • Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79(4):733–743

    Article  CAS  Google Scholar 

  • Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616

    Article  CAS  Google Scholar 

  • Puri R, Worthley MI, Nicholls SJ (2011) Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat Rev Cardiol 8(3):131–139. https://doi.org/10.1038/nrcardio.2010.210 nrcardio.2010.210 [pii]

    Article  PubMed  Google Scholar 

  • Puri R, Madder RD, Madden SP, Sum ST, Wolski K, Muller JE, Andrews J, King KL, Kataoka Y, Uno K, Kapadia SR, Tuzcu EM, Nissen SE, Virmani R, Maehara A, Mintz GS, Nicholls SJ (2015) Near-infrared spectroscopy enhances intravascular ultrasound assessment of vulnerable coronary plaque a combined pathological and in vivo study. Arterioscl Throm Vas 35(11):2423–2431. https://doi.org/10.1161/Atvbaha.115.306118

    Article  CAS  Google Scholar 

  • Roleder T, Kovacic JC, Ali Z, Sharma R, Cristea E, Moreno P, Sharma SK, Narula J, Kini AS (2014) Combined NIRS and IVUS imaging detects vulnerable plaque using a single catheter system: a head-to-head comparison with OCT. Eurointervention 10(3):303–311. https://doi.org/10.4244/Eijv10i3a53

    Article  PubMed  Google Scholar 

  • Stahli BE, Riedel M, Lauten A, Leistner DM (2017) Intravascular ultrasound imaging for the therapy of coronary artery disease. Technical and clinical basic principles. Kardiologe 11(6):501–512. https://doi.org/10.1007/s12181-017-0205-6

    Article  Google Scholar 

  • Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, Vacas-Jacques P, Rosenberg M, Jaffer FA, Tearney GJ (2016) First-in-human dual-modality oct and near-infrared autofluorescence imaging of coronary artery disease. JACC Cardiovascular Imaging 9(11):1304–1314

    PubMed  Google Scholar 

  • Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA (2011) Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 3 (84):84ra45. https://doi.org/10.1126/scitranslmed.3001577

    Article  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    Article  CAS  Google Scholar 

  • Wang H, Gardecki JA, Ughi GJ, Jacques PV, Hamidi E, Tearney GJ (2015) Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm. Biomed Opt Express 6(4):1363–1375. https://doi.org/10.1364/Boe.6.001363

    Article  PubMed  PubMed Central  Google Scholar 

  • Waxman S, Dixon SR, L’Allier P, Moses JW, Petersen JL, Cutlip D, Tardif JC, Nesto RW, Muller JE, Hendricks MJ, Sum ST, Gardner CM, Goldstein JA, Stone GW, Krucoff MW (2009) In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovascular imaging 2(7):858–868. https://doi.org/10.1016/j.jcmg.2009.05.001 S1936-878X(09)00345-3 [pii]

    Article  PubMed  Google Scholar 

  • White HD, Chew DP (2008) Acute myocardial infarction. Lancet 372(9638):570–584. https://doi.org/10.1016/S0140-6736(08)61237-4

    Article  CAS  PubMed  Google Scholar 

  • Yamada E, Matsumura M, Kyo S, Omoto R (1995) Usefulness of a prototype intravascular ultrasound imaging in evaluation of aortic dissection and comparison with angiographic study, transesophageal echocardiography, computed tomography, and magnetic resonance imaging. Am J Cardiol 75:161–165

    Article  CAS  Google Scholar 

  • Yang HC, Yin J, Hu C, Cannata J, Zhou Q, Zhang J, Chen Z, Shung KK (2010) A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications. IEEE Trans Ultrason Ferroelectr Freq Control 57(12):2839–2843. https://doi.org/10.1109/TUFFC.2010.1758

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaqoob Z, Wu J, McDowell EJ, Heng X, Yang C (2006) Methods and application areas of endoscopic optical coherence tomography. J Biomed Opt 11(6):063001. https://doi.org/10.1117/1.2400214

    Article  PubMed  Google Scholar 

  • Yin J, Yang HC, Li X, Zhang J, Zhou Q, Hu C, Shung KK, Chen Z (2010) Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Opt 15(1):010512. https://doi.org/10.1117/1.3308642

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll-Young J (1998) Binding properties of indocyanine green in human blood. Invest Ophthalmol Vis Sci 39(7):1286–1290

    CAS  PubMed  Google Scholar 

  • Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, McCarthy JR, Ntziachristos V, Bouma BE, Jaffer FA, Tearney GJ (2011) Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 17(12):1680–1684. https://doi.org/10.1038/nm.2555 nm.2555 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zacharatos H, Hassan AE, Qureshi A (2010) Intravascular Ultrasound: Principles and Cerebrovascular Applications. Am J Neuroradiol 31(4):586–597. https://doi.org/10.3174/ajnr.A1810

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Chen, Z. (2020). Intravascular Dual-Modality Imaging (NIRF/IVUS, NIRS/IVUS, IVOCT/NIRF, and IVOCT/NIRS). In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics