Skip to main content

Dual-Modality Fluorescence Lifetime and Intravascular Ultrasound for Label-Free Intravascular Coronary Imaging

  • Chapter
  • First Online:
Multimodality Imaging

Abstract

Atherosclerosis in the coronary arteries accounts for nearly 50% of cardiovascular disease-related deaths. To characterize an atherosclerotic disease, imaging modalities that measure both the biochemical and structural properties of the lesions in the coronary arteries are necessary. To accomplish this, time-resolved fluorescence spectroscopy (TRFS) can be used to determine biochemical composition while adding diagnostic value to intravascular ultrasound (IVUS), which identifies structural features of the arterial wall. Healthy and diseased human arteries have distinct autofluorescent properties that allow specific biochemical features of atherosclerosis to be characterized with ultraviolet light excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson-Engels S, Johansson J, Stenram U, Svanberg K, Svanberg S (1990) Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques. J Photochem Photobiol B Biology 4(4):363–369

    Article  CAS  PubMed  Google Scholar 

  • Angheloiu GO, Haka AS, Georgakoudi I, Arendt J, Muller MG, Scepanovic OR, Evanko SP, Wight TN, Mukherjee P, Waldeck DH, Dasari RR, Fitzmaurice M, Kramer JR, Feld MS (2011) Detection of coronary atherosclerotic plaques with superficial proteoglycans and foam cells using real-time intrinsic fluorescence spectroscopy. Atherosclerosis 215(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Isoda K, Ito T, Nakajima K, Shibuya T, Ohsuzu F (2002) Fluorescence analysis of biochemical constituents identifies atherosclerotic plaque with a thin fibrous cap. Arterioscler Thromb Vasc Biol 22(6):1002–1007

    Article  CAS  PubMed  Google Scholar 

  • Baraga JJ, Taroni P, Park YD, An K, Maestri A, Tong LL, Rava RP, Kittrell C, Dasari RR, Feld MS (1989) Ultraviolet-laser induced fluorescence of human aorta. Spectrochimica Acta Part A Mol Biomol Spectrosc 45(1):95–99

    Article  Google Scholar 

  • Baraga JJ, Rava RP, Taroni P, Kittrell C, Fitzmaurice M, Feld MS (1990) Laserinduced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306-310 nm excitation. Lasers Surg Med 10(3):245–261

    Article  CAS  PubMed  Google Scholar 

  • Bartorelli AL, Leon MB, Almagor Y, Prevosti LG, Swain JA, McIntosh CL, Neville RF, House MD, Bonner BF (1991) In vivo human atherosclerotic plaque recognition by laser-excited fluorescence spectroscopy. J Am Coll Cardiol 17(6, Suppl B):160–168

    Article  Google Scholar 

  • Bec J, Xie H, Yankelevich DR, Zhou F, Sun Y, Ghata N, Aldredge R, Marcu L (2012) Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound. J Biomed Opt 17(10):106012

    Article  PubMed  PubMed Central  Google Scholar 

  • Bec J, Ma DM, Yankelevich DR, Liu J, Ferrier WT, Southard J, Marcu L (2014) Multispectral fluorescence lifetime imaging system for intravascular diagnostics with ultrasound guidance: in vivo validation in swine arteries. J Biophotonics 7(5):281–285

    Article  CAS  PubMed  Google Scholar 

  • Bec J, Gorpas D, Ma D, Fatakdawala H, Phipps JE, Margulies KB, Southard JA, Marcu L (2016) Integrated intravascular ultrasound and multispectral fluorescence lifetime catheter system for label-free simultaneous structural and biochemical imaging of arteries: a study in vivo swine heart coronaries and in explanted diseased human coronaries. Circ Cardiovasc Interv. (vol. in review)

    Google Scholar 

  • Bec J, Phipps J, Gorpas D, Ma D, Fatakdawala H, Margulies K, Southard J, Marcu L (2017) In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system. Scientific Reports 7(1):8960

    Article  PubMed  PubMed Central  Google Scholar 

  • Christov A, Dai E, Drangova M, Liu L, Abela GS, Nash P, McFadden G, Lucas A (2000) Optical detection of triggered atherosclerotic plaque disruption by fluorescence emission analysis. Photochem Photobiol 72(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • De Beule P, Owen DM, Manning HB, Talbot CB, Requejo-Isidro J, Dunsby C, McGinty J, Benninger RK, Elson DS, Munro I, John Lever M, Anand P, Neil MA, French PM (2007) Rapid hyperspectral fluorescence lifetime imaging. Microsc Res Tech 70(5):481–484

    Article  PubMed  Google Scholar 

  • Dowling K, Dayel MJ, Lever MJ, French PM, Hares JD, Dymoke-Bradshaw AK (1998) Fluorescence lifetime imaging with picosecond resolution for biomedical applications. Opt Lett 23(10):810–812

    Article  CAS  PubMed  Google Scholar 

  • Edholm P, Jacobson B (1965) Detection of aortic atheromatosis in vivo by reflection spectrophotometry. J Atherosclerosis Research 5(6):592–595

    Article  CAS  Google Scholar 

  • Fatakdawala H, Gorpas D, Bishop JW, Bec J, Ma D, Southard JA, Margulies KB, Marcu L (2015) Fluorescence lifetime imaging combined with conventional intravascular ultrasound for enhanced assessment of atherosclerotic plaques: an ex vivo study in human coronary arteries. J Cardiovasc Transl Res 8(4):253–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzmaurice M, Bordagaray JO, Engelmann GL, Richards-Kortum R, Kolubayev T, Feld MS, Ratliff NB, Kramer JR (1989) Argon ion laser-excited autofluorescence in normal and atherosclerotic aorta and coronary arteries: morphologic studies. Am Heart J 118(5 Pt 1):1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Frick K, Michael TT, Alomar M, Mohammed A, Rangan BV, Abdullah S, Grodin J, Hastings JL, Banerjee S, Brilakis ES (2014) Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media. Catheter Cardiovasc Interv 84(5):727–731

    Article  PubMed  Google Scholar 

  • Gorpas D, Fatakdawala H, Bec J, Ma D, Yankelevich DR, Qi J, Marcu L (2015) Fluorescence lifetime imaging and intravascular ultrasound: co-registration study using ex vivo human coronaries. IEEE Trans Med Imaging 34(1):156–166

    Article  PubMed  Google Scholar 

  • Jo JA, Fang Q, Marcu L (2005) Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the laguerre expansion technique. IEEE J Quant Electron 11(4):835–845

    Article  CAS  Google Scholar 

  • Jo JA, Park J, Pande P, Shrestha S, Serafino MJ, Rico Jimenez Jde J, Clubb F, Walton B, Buja LM, Phipps JE, Feldman MD, Adame J, Applegate BE (2015) Simultaneous morphological and biochemical endogenous optical imaging of atherosclerosis. Eur Heart J Cardiovasc Imaging 16(8):910–918

    Article  PubMed  PubMed Central  Google Scholar 

  • Kittrell C, Willett RL, de los Santos-Pacheo C, Ratliff NB, Kramer JR, Malk EG, Feld MS (1985) Diagnosis of fibrous arterial atherosclerosis using fluorescence. Applied Optics 24(15):2280–2281

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun Y, Qi J, Marcu L (2012) A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion. Phys Med Biol 57(4):843–865

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma D, Bec J, Yankelevich DR, Gorpas D, Fatakdawala H, Marcu L (2014) Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications. J Biomed Opt 19(6):066004

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma D, Bec J, Gorpas D, Yankelevich D, Marcu L (2015) Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs). Biomed Opt Express 6(3):987–1002

    Article  PubMed  PubMed Central  Google Scholar 

  • Maarek JMI, Snyder WJ, Grundfest WS (1997) Time-resolved laser-induced fluorescence of arterial wall constituents: deconvolution algorithm and spetrotemporal characteristics. Proc SPIE 2980:278–285

    Article  Google Scholar 

  • Maarek JMI, Marcu L, Grundfest WS (1998) Characterization of atherosclerotic lesions with laser-induced time-resolved fluorescence spectroscopy. Proc SPIE 3250:181–187

    Article  Google Scholar 

  • Maarek JMI, Marcu L, Fishbein MC, Grundfest WS (2000) Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions. Lasers Surg Med 27(3):241–254

    Article  CAS  PubMed  Google Scholar 

  • Marcu L, Maarek JMI, Grundfest WS (1998) Time-resolved laser-induced fluorescence of lipids involved in development of atherosclerotic lesion lipid-rich core. Proc SPIE 3250:158–167

    Article  CAS  Google Scholar 

  • Marcu L, Fishbein MC, Maarek JMI, Grundfest WS (2001) Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Arterioscler Thromb Vasc Biol 21(7):1244–1250

    Article  CAS  PubMed  Google Scholar 

  • Marcu L, Grundfest WS, Fishbein M (2003) Time-resolved laser-induced fluorescence spectroscopy for staging atherosclerotic lesions. In: Book section 12. Marcel Dekker, Inc., New York, pp 397–430

    Chapter  Google Scholar 

  • Marcu L, Fang QY, Jo JA, Papaioannou T, Dorafshar A, Reil T, Qiao JH, Baker JD, Freischlag JA, Fishbein MC (2005) In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 181(2):295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morguet AJ, Korber B, Abel B, Hippler H, Wiegand V, Kreuzer H (1994) Autofluorescence spectroscopy using a xecl excimer-laser system for simultaneous plaque ablation and fluorescence excitation. Lasers Surg Med 14(3):238–248

    Article  CAS  PubMed  Google Scholar 

  • Munro I, McGinty J, Galletly N, Requejo-Isidro J, Lanigan PM, Elson DS, Dunsby C, Neil MA, Lever MJ, Stamp GW, French PM (2005) Toward the clinical application of time-domain fluorescence lifetime imaging. J Biomed Opt 10(5):051403

    Article  CAS  PubMed  Google Scholar 

  • Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Takarada S, Kubo T, Kimura K, Tanaka A, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2012) Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J 76(4):922–927

    Article  PubMed  Google Scholar 

  • Papazoglou TG, Liu WQ, Katsamouris A, Fotakis C (1994) Laser-induced fluorescence detection of cardiovascular atherosclerotic deposits via their natural emission and hypocrellin (ha) probing. J Photochem Photobiol B Biology 22(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Phipps JE, Hatami N, Galis ZS, Baker JD, Fishbein MC, Marcu L (2011a) A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and-9 in human atherosclerotic plaque. J Biophotonics 4(9):650–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps J, Sun YH, Saroufeem R, Hatami N, Fishbein MC, Marcu L (2011) Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques. J Biomed Opt 16(9)

    Article  PubMed  PubMed Central  Google Scholar 

  • Spite M, Serhan CN (2011) Lipid signatures of unstable atheromas: fossils or a step toward personalized lipidomics-metabolomics? Circ Cardiovasc Genet 4(3):215–217

    Article  CAS  PubMed  Google Scholar 

  • Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. a report from the committee on vascular lesions of the council on arteriosclerosis, american heart association. Circulation 89(5):2462–2478

    Article  CAS  PubMed  Google Scholar 

  • Su J, Greiner C, Grainger S, Saybolt M, Pickering W, Wilensky R, Raichlen J, He V, Sum S, Muller J, Madden S (2016) Tct-575 combined near-infrared spectroscopy and intravascular ultrasound (nirs-ivus) coronary imaging as a means to improve prediction of events by ivus plaque burden alone. J Am Coll Cardiol 68(18S):B232–B233

    Article  Google Scholar 

  • Sun Y, Liu R, Elson DS, Hollars CW, Jo JA, Park J, Marcu L (2008) Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis. Opt Lett 33(6):630–632

    Article  PubMed  Google Scholar 

  • Sun Y, Chaudhari AJ, Lam M, Xie HT, Yankelevich DR, Phipps J, Liu J, Fishbein MC, Cannata JM, Shung KK, Marcu L (2011a) Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques. Biomed Opt Express 2(8):2288–2298

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Stephens D, Xie H, Phipps J, Saroufeem R, Southard J, Elson DS, Marcu L (2011b) Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis. Opt Express 19(5):3890–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas P, Pande P, Clubb F, Adame J, Jo JA (2010) Biochemical imaging of human atherosclerotic plaques with fluorescence lifetime angioscopy. Photochem Photobiol 86(3):727–731

    Article  CAS  PubMed  Google Scholar 

  • Upston JM, Niu X, Brown AJ, Mashima R, Wang H, Senthilmohan R, Kettle AJ, Dean RT, Stocker R (2002) Disease stage-dependent accumulation of lipid and protein oxidation products in human atherosclerosis. Am J Pathol 160(2):701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbunt RJAM, Fitzmaurice MA, Kramer JR, Ratliff NB, Kittrell C, Taroni P, Cothren RM, Baraga J, Feld M (1992) Characterization of ultraviolet laser-induced autofluorescence of ceroid deposits and other structures in atherosclerotic plaques as a potential diagnostic for laser angiosurgery. Am Heart J 123(1):208–216

    Article  CAS  PubMed  Google Scholar 

  • Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):13–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Marcu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phipps, J.E., Bec, J., Marcu, L. (2020). Dual-Modality Fluorescence Lifetime and Intravascular Ultrasound for Label-Free Intravascular Coronary Imaging. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics