Skip to main content

Contrast-Enhanced Dual-Frequency Super-Harmonic Intravascular Ultrasound (IVUS) Imaging

  • Chapter
  • First Online:
Multimodality Imaging
  • 757 Accesses

Abstract

Atherosclerotic cardiovascular disease is a leading cause of death worldwide, and one which often manifests without warning (Naghavi 2003). According to the 2014 update of Heart Disease and Stroke Statistics by the American Heart Association (Go et al. 2014), there are more than 2000 deaths every day in the USA on average, which is 1 death every 40 s. For up to 75% of acute coronary syndromes, the underlying pathological mechanism is hypothesized to be atherosclerotic plaque rupture (Naghavi 2003). Unfortunately, a high percentage of vulnerable plaques are also angiographically occult, and these are responsible for a high proportion of ensuing cardiac events resulting in either fatalities or requiring further interventional treatment (Glaser 2005; Goertz et al. 2007). For this reason, detection and characterization of plaques which are rupture prone is one of the most active areas of research in cardiology and biomedical imaging (Constantinides 1990). The vasa vasorum is a network of microvessels which supports larger vessels such as the aorta, and increased density of the vasa vasorum has been associated with a plaque advancing from a stable state to a rupture-prone state (Naghavi 2010; Moulton et al. 2003). Additionally, intraplaque hemorrhage occurring from thin-walled, immature microvessels has been present in plaques in many cases of sudden coronary death (Virmani 2005). Evidence suggests that vasa vasorum proliferation and associated angiogenesis and inflammation is associated with plaque instability and rupture (Virmani 2005; Kolodgie et al. 2003; Milei et al. 1998; Moreno and Fuster 2004). As our ability to predict the instability of atherosclerotic lesions remains a substantial challenge, there is an unmet need for new imaging methods to identify, detect, and differentiate these pathologies (Jaffer et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azuma T, Ogihara M, Kubota J, Sasaki A, S-i Umemura, Furuhata H (2010) Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer. IEEE Trans Ultrason Ferroelectr Freq Control 57(5):1211–1224

    Article  PubMed  Google Scholar 

  • Borden MA, Sarantos MR, Stieger SM, Simon SI, Ferrara KW, Dayton PA (2006) Ultrasound radiation force modulates ligand availability on targeted contrast agents. Mol Imaging 5(3):139–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouakaz A, Krenning BJ, Vletter WB, Cate FJT, Jong ND (2003) Contrast superharmonic imaging: a feasibility study. Ultrasound Med Biol 29(4):547–553. https://doi.org/10.1016/s0301-5629(03)00012-7

    Article  PubMed  Google Scholar 

  • Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3(11):913–925. https://doi.org/10.1038/nrd1548

    Article  CAS  PubMed  Google Scholar 

  • Constantinides P (1990) Cause of thrombosis in human atherosclerotic arteries. Am J Cardiol 66(16):G37–G40

    Article  Google Scholar 

  • Doinikov AA, Haac JF, Dayton PA (2009) Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations. Ultrasonics 49(2):263–268

    Article  CAS  PubMed  Google Scholar 

  • Feinstein SB (2006) Contrast ultrasound Imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. J Am Coll Cardiol 48(2):236–243. https://doi.org/10.1016/j.jacc.2006.02.068

    Article  PubMed  Google Scholar 

  • Garcia-Garcia HM, Costa MA, Serruys PW (2010) Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J 31(20):2456–2469. https://doi.org/10.1093/eurheartj/ehq280

    Article  PubMed  Google Scholar 

  • Gessner R, Dayton PA (2010) Advances in molecular imaging with ultrasound. Mol Imaging 9(3):117–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Gessner R, Lukacs M, Lee M, Cherin E, Foster FS, Dayton PA (2010) High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: in vitro and in vivo studies. IEEE Trans Ultrason Ferroelectr Freq Control 57(8):1772–1781. https://doi.org/10.1109/tuffc

    Article  PubMed  PubMed Central  Google Scholar 

  • Gessner RC, Aylward SR, Dayton PA (2012) Mapping microvasculature with acoustic angiography yields quantifiable differences between healthy and tumor-bearing tissue volumes in a rodent model. Radiology 264(3):733–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Gessner RC, Frederick CB, Foster FS, Dayton PA (2013a) Acoustic angiography: a new imaging modality for assessing microvasculature architecture. Int J Biomed Imaging 2013

    Google Scholar 

  • Gessner RC, Frederick CB, Foster FS, Dayton PA (2013b) Acoustic angiography: a new imaging modality for assessing microvasculature architecture. Int J Biomed Imaging 2013:14

    Article  Google Scholar 

  • Gessner RC, Frederick CB, Foster FS, Dayton PA (2013c) Acoustic angiography: a new imaging modality for assessing microvasculature architecture. Int J Biomed Imaging 2013:936593. https://doi.org/10.1155/2013/936593

    Article  PubMed  PubMed Central  Google Scholar 

  • Glaser R (2005) Clinical progression of Incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 111(2):143–149. https://doi.org/10.1161/01.cir.0000150335.01285.12

    Article  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S (2014) Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3):e28

    PubMed  Google Scholar 

  • Goertz DE, Frijlink ME, Tempel D, van Damme LC, Krams R, Schaar JA, Folkert J, Serruys PW, Jong ND, van der Steen AF (2006) Contrast harmonic intravascular ultrasound: a feasibility study for vasa vasorum imaging. Invest Radiol 41(8):631–638

    Article  PubMed  Google Scholar 

  • Goertz DE, Frijlink ME, Tempel D, Bhagwandas V, Gisolf A, Krams R, de Jong N, van der Steen AF (2007) Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med Biol 33(12):1859–1872. https://doi.org/10.1016/j.ultrasmedbio.2007.05.023

    Article  PubMed  Google Scholar 

  • Jaffer FA, Libby P, Weissleder R (2006) Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 47(7):1328–1338

    Article  CAS  PubMed  Google Scholar 

  • Jang I-K, Bouma BE, Kang D-H, Park S-J, Park S-W, Seung K-B, Choi K-B, Shishkov M, Schlendorf K, Pomerantsev E (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–609

    Article  PubMed  Google Scholar 

  • Jong N, Bouakaz A, Cate FJT (2002) Contrast harmonic imaging. Ultrasonics 40:567–573

    Article  PubMed  Google Scholar 

  • Kasprzak JD, Paelinck B, Ten Cate FJ, Vletter WB, de Jong N, Poldermans D, Elhendy A, Bouakaz A, Roelandt JR (1999) Comparison of native and contrast-enhanced harmonic echocardiography for visualization of left ventricular endocardial border. Am J Cardiol 83(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Kinsler LE, Frey AR, Coppens AB, Sanders JV (2000) Fundamentals of acoustics, 4th edn. Wiley, USA

    Google Scholar 

  • Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK,  Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325

    Article  CAS  PubMed  Google Scholar 

  • Kossoff G (1966) The effects of backing and matching on the performance of piezoelectric ceramic transducers. IEEE Trans Son Ultrason 13(1):20–30

    Article  Google Scholar 

  • Krimholtz R, Leedom DA, Mattaei GL (1970) New equivalent circuits for elementary piezoelectric transducers. Electron Lett 41(13):398–399

    Article  Google Scholar 

  • Kruse DE, Ferrara KW (2005) A new imaging strategy using wideband transient response of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 52(8):1320–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon HM, Sangiorgi G, Ritman EL, McKenna C, Holmes DR Jr, Schwartz RS, Lerman A (1998) Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 101(8):1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerch R (1990) Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans Ultrason Ferroelectr Freq Control 37(3):233–247

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ma J, Martin KH, Choi H, Dayton PA, Jiang X, Shung KK, Zhou Q (2014) A configurable dual-frequency transmit/receive system for acoustic angiography imaging. In: 2014 IEEE International ultrasonics symposium (IUS). IEEE, pp 731–733

    Google Scholar 

  • Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11(2):215–221. https://doi.org/10.1016/j.nuclcard.2004.01.003

    Article  PubMed  Google Scholar 

  • Lockwood GR, Ryan LK, Hunt JW, Foster FS (1991) Measurement of the ultrasonic properties of vascular tissues and blood from 35–65 MHz. Ultrasound Med Biol 17:653–666

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Jiang X, Heath Martin K, Dayton PA (2013a) Small aperture, dual frequency ultrasound transducers for intravascular contrast imaging. In: 2013 IEEE Int Ultrason Symp (IUS), Chicago, IL. IEEE, pp 769–772

    Google Scholar 

  • Ma J, Wang Z, Jiang X (2013b) Design, fabrication, and test of a small aperture, dual frequency ultrasound transducer. In: Kundu T (ed) Proceedings of SPIE, San Diego, p 86951H. https://doi.org/10.1117/12.2009716

  • Ma J, Jiang X, Martin KH, Dayton PA, Li Y, Zhou Q (2014a) Dual frequency transducers for intravascular ultrasound super-harmonic imaging and acoustic angiography. In: 2014 IEEE International Ultrasonics Symposium (IUS). IEEE, pp 675–678

    Google Scholar 

  • Ma J, Martin KH, Dayton PA, Jiang X (2014b) A preliminary engineering design of intravascular dual-frequency transducers for contrast enhanced acoustic angiography and molecular imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61(5):870–880

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Li S, Wang Z, Jiang X (2014c) Anti-matching design for wave isolation in dual frequency transducer for intravascular super-harmonic imaging. In: Proceedings of ASME 2014 IMECE, Montreal, Canada (in press)

    Google Scholar 

  • Martin K, Lindsey B, Ma J, Lee M, Li S, Foster F, Jiang X, Dayton P (2014) Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging. Sensors 14(11):20825–20842. https://doi.org/10.3390/s141120825

    Article  PubMed  Google Scholar 

  • Mason WP (1930) The approaximate network of acoustic filters. Bell Syst Tech J 9(2):332–340

    Article  Google Scholar 

  • Milei J, Parodi JC, Alonso GF, Barone A, Grana D, Matturri L (1998) Carotid rupture and intraplaque hemorrhage: immunophenotype and role of cells involved. Am Heart J 136(6):1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Moreno PR, Fuster V (2004) New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol 44(12):2293–2300

    Article  CAS  PubMed  Google Scholar 

  • Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, Lo K, Gillies S, Javaherian K, Folkman J (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. P Natl Acad Sci USA 100(8):4736–4741

    Article  CAS  Google Scholar 

  • Naghavi M (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14):1664–1672. https://doi.org/10.1161/01.cir.0000087480.94275.97

    Article  PubMed  Google Scholar 

  • Naghavi M (2010) Asympotomatic atherosclerosis: pathophysiology, DETECTION and treatment. Humana Press

    Google Scholar 

  • Nissen SE, Gurley JC, Grines CL, Booth DC, McClure R, Berk M, Fischer C, DeMaria AN (1991) Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 84(3):1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Schomann T, Qunneis F, Widera D, Kaltschmidt C, Kaltschmidt B (2013) Improved method for ex ovo-cultivation of developing chicken embryos for human stem cell xenografts. Stem Cells Int 2013:960958

    Article  PubMed  PubMed Central  Google Scholar 

  • Shung KK, Cannata JM, Zhou QF (2007) Piezoelectric materials for high frequency medical imaging applications: a review. J Electroceram 19(1):141–147. https://doi.org/10.1007/s10832-007-9044-3

    Article  CAS  Google Scholar 

  • Slager CJ, Wentzel JJ, Schuurbiers JC, Oomen JA, Kloet J, Krams R, Von Birgelen C, Van Der Giessen WJ, Serruys PW, De Feyter PJ (2000) True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102(5):511–516

    Article  CAS  PubMed  Google Scholar 

  • Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218(1):7–29. https://doi.org/10.1002/path.2518

    Article  PubMed  Google Scholar 

  • Smith P (1995) Electronic applications of the smith chart. The Institution of Engineering and Technology

    Google Scholar 

  • Staub D, Schinkel AFL, Coll B, Coli S, van der Steen AFW, Reed JD, Krueger C, Thomenius KE, Adam D, Sijbrands EJ, ten Cate FJ, Feinstein SB (2010) Contrast-enhanced ultrasound imaging of the vasa vasorum: from early atherosclerosis to the identification of unstable plaques. JACC: Cardiovasc Imaging 3(7):761–771. https://doi.org/10.1016/j.jcmg.2010.02.007

    PubMed  Google Scholar 

  • Steer MB (2013) Microwave and RF design: a systems approach, 2nd edn. SciTech, New Jersey

    Google Scholar 

  • Tang MX, Eckersley RJ (2006) Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging. IEEE Trans Ultrason Ferroelectr Freq Control 53:2406–2415

    Article  PubMed  Google Scholar 

  • Ten Kate GL, Renaud GGJ, Akkus Z, van den Oord SCH, ten Cate FJ, Shamdasani V, Entrekin RR, Sijbrands EJG, de Jong N, Bosch JG, Schinkel AFL, van der Steen AFW (2012) Far-wall pseudoenhancement during contrast-enhanced ultrasound of the carotid arteries: clinical description and in vitro reproduction. Ultrasound Med Biol 38:593–600

    Article  PubMed  Google Scholar 

  • ten Kate GL, Sijbrands EJG, Valkema R, ten Cate FJ, Feinstein SB, Steen AFW, Daemen MJAP, Schinkel AFL (2010) Molecular imaging of inflammation and intraplaque vasa vasorum: a step forward to identification of vulnerable plaques? J Nucl Cardiol 17(5):897–912. https://doi.org/10.1007/s12350-010-9263-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobis JM, Mallery J, Mahon D, Lehmann K, Zalesky P, Griffith J, Gessert J, Moriuchi M, McRae M, Dwyer M-L (1991) Intravascular ultrasound imaging of human coronary arteries in vivo. Analysis of tissue characterizations with comparison to in vitro histological specimens. Circulation 83(3):913–926

    Article  CAS  PubMed  Google Scholar 

  • Van Neer PLMJ, Matte G, Danilouchkine MG, Prins C, Van Den Adel F, Jong ND (2010) Super-harmonic imaging: development of an interleaved phase-array transducer. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):455–468

    Article  PubMed  Google Scholar 

  • Virmani R (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc 25(10):2054–2061. https://doi.org/10.1161/01.atv.0000178991.71605.18

    Article  CAS  Google Scholar 

  • Wang H, Ritter T, Cao W, Shung KK (2001) High frequency properties of passive materials for ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):78–84

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, J., Jiang, X. (2020). Contrast-Enhanced Dual-Frequency Super-Harmonic Intravascular Ultrasound (IVUS) Imaging. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics