Skip to main content

Therapeutic IVUS and Contrast Imaging

  • Chapter
  • First Online:
Multimodality Imaging

Abstract

Intravascular ultrasound (IVUS), comprising a mechanically scanned ultrasound transducer, or a solid-state array, placed near the tip of a catheter, is now well established as a useful imaging modality in diagnosis of cardiovascular disease and for assessment of therapy. More recently, the potential for the same underlying technology to address not only diagnosis, but also therapy, has been recognized. This promotes the desirable concept of being able to perform therapy immediately after a diagnosis is made and under image guidance. Frequently, this therapy involves the use of ultrasound beams in combination with contrast microbubbles to provide enhanced local drug delivery. In addition to the therapeutic uses of microbubbles, this chapter will also address the imaging qualities facilitated by using microbubbles in the context of IVUS. When these concepts are brought together, we can assess each of anatomic structure in very fine detail, functional performance (e.g., blood flow) and the molecular signature of disease. Using relatively modest enhancements to current designs, it is possible to perform a comprehensive diagnosis and follow this immediately with image-guided therapy. It is also possible to incorporate a method to assess completion of therapy/drug delivery. A number of technical considerations, discussed in this chapter, enable this vision. Firstly, achieving therapeutic levels of ultrasound, or at least levels at which drug delivery is achieved, is feasible with appropriate device design choice. Secondly, when performing a therapeutic procedure, it is preferable to have simultaneous in time and space image guidance. Thirdly, it is attractive to have a multi-function catheter to provide each of imaging, therapy/drug delivery, and verification of delivery. Although no fully integrated diagnostic, therapy, verification catheter has been tested in vivo, this appears to be within reach in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abran M, Cloutier G, Cardinal M-HR, Chayer B, Tardif J-C, Lesage F (2014) Development of a photoacoustic, ultrasound and fluorescence imaging catheter for the study of atherosclerotic plaque. IEEE Trans Biomed Circ Syst 8(5):696–703. https://doi.org/10.1109/TBCAS.2014.2360560

    Article  Google Scholar 

  • Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD (2001) High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 37(7):1975–1980

    Article  CAS  PubMed  Google Scholar 

  • Baker R, Samuels S, Benenati JF, Powell A, Uthoff H (2012) Ultrasound-accelerated versus standard catheter-directed thrombolysis—a comparative study in patients with iliofemoral deep vein thrombosis. J Vasc Intervent Radiol 23(11):1460–1466. https://doi.org/10.1016/j.jvir.2012.08.008

    Article  Google Scholar 

  • Bom N, Lancee CT, van Egmond FC (1972) An ultrasonic intracardiac scanner. Ultrasonics 10(2):72–77

    Article  CAS  PubMed  Google Scholar 

  • Bom N, Li W, van der Steen AFW, Lancée CT, Céspedes EI, Slager CJ, de Korte CL (1998) New developments in intravascular ultrasound imaging. Eur J Ultrasound 7(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Brock-Fisher GA, Poland MD, Rafter P (1996) Means for increasing sensitivity in non-linear ultrasound imaging systems. United States Patent 5(577):505

    Google Scholar 

  • Brugaletta S, Garcia-Garcia HM, Serruys PW, de Boer S, Ligthart J, Gomez-Lara J, Witberg K, Diletti R, Wykrzykowska J, van Geuns R-J, Schultz C, Regar E, Duckers HJ, van Mieghem N, de Jaegere P, Madden SP, Muller JE, van der Steen AFW, van der Giessen WJ, Boersma E (2011) NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC Cardiovasc Imag 4(6):647–655. https://doi.org/10.1016/j.jcmg.2011.03.013

    Article  Google Scholar 

  • Carlier S, Kakadiaris IA, Dib N, Vavuranakis M, O’Malley SM, Gul K, Hartley CJ, Metcalfe R, Mehran R, Stefanadis C, Falk E, Stone G, Leon M, Naghavi M (2005) Vasa vasorum imaging: A new window to the clinical detection of vulnerable atherosclerotic plaques. Curr Atheroscler Rep 7(2):164–169. https://doi.org/10.1007/s11883-005-0040-2

    Article  PubMed  Google Scholar 

  • Castelino RF, Hynes M, Munding CE, Telenkov S, Foster FS (2016) Combined frequency domain photoacoustic and ultrasound imaging for intravascular applications. Biomed Opt Express 7(11):4441–4449. https://doi.org/10.1364/boe.7.004441

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman C, Lazenby J (1997) US patent 5,632,277 ultrasound imaging system employing phase inversion subtraction to enhance the image

    Google Scholar 

  • Chen JL, Dhanaliwala AH, Dixon AJ, Klibanov AL, Hossack JA (2014) Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device. Ultrasound Med Biol 40(2):400–409. https://doi.org/10.1016/j.ultrasmedbio.2013.09.024

    Article  PubMed  Google Scholar 

  • Choe JW, Oralkan Ö, Nikoozadeh A, Gencel M, Stephens DN, O’Donnell M, Sahn DJ, Khuri-Yakub BT (2012) Volumetric real-time imaging using a CMUT ring array. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1201–1211. https://doi.org/10.1109/TUFFC.2012.2310

    Article  PubMed  PubMed Central  Google Scholar 

  • Claessen BE, Mehran R, Mintz GS, Weisz G, Leon MB, Dogan O, de Ribamar Costa J, Stone GW, Apostolidou I, Morales A, Chantziara V, Syros G, Sanidas E, Xu K, Tijssen JGP, Henriques JPS, Piek JJ, Moses JW, Maehara A, Dangas GD (2011) Impact of intravascular ultrasound imaging on early and late clinical outcomes following percutaneous coronary intervention with drug-eluting stents. JACC Cardiovasc Interv 4(9):974–981. https://doi.org/10.1016/j.jcin.2011.07.005

    Article  PubMed  Google Scholar 

  • Cosgrove D, Lassau N (2010) Imaging of perfusion using ultrasound. Eur J Nucl Med Mol I 37(1):65–85. https://doi.org/10.1007/s00259-010-1537-7

    Article  Google Scholar 

  • Dayton PA, Allen JS, Ferrara KW (2002) The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 112(5 Pt 1):2183–2192

    Article  CAS  PubMed  Google Scholar 

  • Demos SM, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, Klegerman M, McPherson DD (1999) In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 33(3):867–875

    Article  CAS  PubMed  Google Scholar 

  • Dhanaliwala AH, Chen JL, Wang S, Hossack JA (2013) Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluid Nanofluid 14(3–4):457–467. https://doi.org/10.1007/s10404-012-1064-x

    Article  CAS  PubMed  Google Scholar 

  • Dixon AJ, Jun L, Rickel JMR, Shin B, Zuo Z, Hossack JA Sonothrombolysis efficacy of microbubbles produced by a microfluidic device in a rat ischemic stroke model. In: 2016 IEEE international ultrasonics symposium (IUS), 18–21 Sept 2016, pp 1–4. https://doi.org/10.1109/ultsym.2016.7728879

  • Dixon AJ, Hossack JA (2013) Intravascular near-infrared fluorescence catheter with ultrasound guidance and blood attenuation correction. J Biomed Optics 18(5):056009. https://doi.org/10.1117/1.JBO.18.5.056009

    Article  Google Scholar 

  • Dixon AJ, Dhanaliwala AH, Chen JL, Hossack JA (2013) Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device. Ultrasound Med Biol 39(7):1267–1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon AJ, Hu S, Klibanov AL, Hossack JA (2015a) Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small In Press

    Google Scholar 

  • Dixon AJ, Kilroy JP, Dhanaliwala AH, Chen JL, Phillips LC, Ragosta M, Klibanov AL, Wamhoff BR, Hossack JA (2015b) Microbubble-mediated intravascular ultrasound imaging and drug delivery. IEEE Trans Ultrason Ferroelectr Freq Control 62(9):1674–1685. https://doi.org/10.1109/tuffc.2015.007143

    Article  PubMed  Google Scholar 

  • Dixon AJ, Kilroy JP, Klibanov AL, Hossack JA (2015) Microbubbles produced by a catheter-based flow-focusing microfluidic device for sonothrombolysis. In: European symposium on ultrasound contrast imaging, 2015/01/23/ 2015c. Rotterdam, The Netherlands

    Google Scholar 

  • Dove JD, Murray TW, Borden MA (2013) Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles. Soft Matter 9(32):7743. https://doi.org/10.1039/c3sm51690c

    Article  CAS  Google Scholar 

  • Engelberger RP, Spirk D, Willenberg T, Alatri A, Do D-D, Baumgartner I, Kucher N (2015) Ultrasound-assisted versus conventional catheter-directed thrombolysis for acute iliofemoral deep vein thrombosis. Circ: Cardiovasc Intervent 8(1). https://doi.org/10.1161/circinterventions.114.002027

  • FDA (2016) http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203684s001lbl.pdf

  • Ferrara KW, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447. https://doi.org/10.1146/annurev.bioeng.8.061505.095852

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald PJ, Takagi A, Moore MP, Hayase M, Kolodgie FD, Corl D, Nassi M, Virmani R, Yock PG (2001) Intravascular sonotherapy decreases neointimal hyperplasia after stent implantation in swine. Circulation 103(14):1828–1831. https://doi.org/10.1161/01.cir.103.14.1828

    Article  CAS  PubMed  Google Scholar 

  • Goertz DE, Frijlink ME, de Jong N, van der Steen AF (2006a) Nonlinear intravascular ultrasound contrast imaging. Ultrasound Med Biol 32(4):491–502. https://doi.org/10.1016/j.ultrasmedbio.2006.01.001

    Article  PubMed  Google Scholar 

  • Goertz DE, Frijlink ME, Tempel D, van Damme LCA, Krams R, Schaar JA, Ten Cate FJ, Serruys PW, de Jong N, van der Steen AFW (2006b) Contrast harmonic intravascular ultrasound: a feasibility study for vasa vasorum imaging. Invest Radiol 41(8):631–638. https://doi.org/10.1097/01.rli.0000229773.11715.da

    Article  PubMed  Google Scholar 

  • Goertz DE, Frijlink ME, Krams R, de Jong N, van der Steen AFW (2007a) Vasa vasorum and molecular imaging of atherosclerotic plaques using nonlinear contrast intravascular ultrasound. Netherlands Heart Journal 15(2):77–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goertz DE, Frijlink ME, Tempel D, Bhagwandas V, Gisolf A, Krams R, de Jong N, van der Steen AFW (2007b) Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med Biol 33(12):1859–1872. https://doi.org/10.1016/j.ultrasmedbio.2007.05.023

    Article  PubMed  Google Scholar 

  • Gurun G, Tekes C, Zahorian J, Xu T, Satir S, Karaman M, Hasler J, Degertekin FL (2014) Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61(2):239–250. https://doi.org/10.1109/TUFFC.2014.6722610

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton AJ, Huang S-L, Warnick D, Rabbat M, Kane B, Nagaraj A, Klegerman M, McPherson DD (2004) Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 43(3):453–460. https://doi.org/10.1016/j.jacc.2003.07.048

    Article  PubMed  Google Scholar 

  • Hannah A, Luke G, Wilson K, Homan K, Emelianov S (2014) Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 8(1):250–259. https://doi.org/10.1021/nn403527r

    Article  CAS  PubMed  Google Scholar 

  • Hettiarachchi K, Talu E, Longo ML, Dayton PA, Lee AP (2007) On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip 7(4):463. https://doi.org/10.1039/b701481n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hettiarachchi K, Zhang S, Feingold S, Lee AP, Dayton PA (2009) Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy. Biotechnol Prog 25(4):938–945. https://doi.org/10.1002/btpr.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiro T, Fujii T, Yasumoto K, Murata T, Murashige A, Matsuzaki M (2001) Detection of fibrous cap in atherosclerotic plaque by intravascular ultrasound by use of color mapping of angle-dependent echo-intensity variation. Circulation 103(9):1206–1211

    Article  CAS  PubMed  Google Scholar 

  • Hohmann J, Albrecht T, Hoffmann CW, Wolf KJ (2003) Ultrasonographic detection of focal liver lesions: increased sensitivity and specificity with microbubble contrast agents. Eur J Radiol 46(2):147–159

    Article  CAS  PubMed  Google Scholar 

  • Howard DPJ, van Lammeren GW, Rothwell PM, Redgrave JN, Moll FL, de Vries J-PPM, de Kleijn DPV, den Ruijter HM, de Borst GJ, Pasterkamp G (2015) Symptomatic carotid atherosclerotic disease: correlations between plaque composition and ipsilateral stroke risk. Stroke; A J Cereb Circ 46(1):182–189. https://doi.org/10.1161/STROKEAHA.114.007221

    Article  Google Scholar 

  • Hu X, Zheng H, Kruse DE, Sutcliffe P, Stephens DN, Ferrara KW (2010) A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):305–316. https://doi.org/10.1109/TUFFC.2010.1411

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Wan JM, Yu AC (2013) Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med Biol 39(12):2393–2405. https://doi.org/10.1016/j.ultrasmedbio.2013.08.003

    Article  PubMed  Google Scholar 

  • Huntzicker S, Shekhar H, Doyley MM (2016) Contrast-enhanced quantitative intravascular elastography: The impact of microvasculature on model-based elastography. Ultrasound Med Biol 42(5):1167–1181. https://doi.org/10.1016/j.ultrasmedbio.2015.12.024

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R (2008) Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 118(18):1802–1809. https://doi.org/10.1161/CIRCULATIONAHA.108.785881

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang I-K, Bouma BE, Kang D-H, Park S-J, Park S-W, Seung K-B, Choi K-B, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–609

    Article  PubMed  Google Scholar 

  • Jansen K, van der Steen AFW, van Beusekom HMM, Oosterhuis JW, van Soest G (2011) Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt Lett 36(5):597–599

    Article  PubMed  Google Scholar 

  • Jansen K, Wu M, van der Steen AFW, van Soest G (2013) Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging. Opt Express 21(18):21472–21484

    Article  PubMed  Google Scholar 

  • Karpiouk AB, Wang B, Emelianov SY (2010) Development of a catheter for combined intravascular ultrasound and photoacoustic imaging. Rev Sci Instrum 81(1):014901. https://doi.org/10.1063/1.3274197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karshafian R, Bevan PD, Williams R, Samac S, Burns PN (2009) Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35(5):847–860. https://doi.org/S0301-5629(08)00503-6 [pii], 10.1016/j.ultrasmedbio.2008.10.013

    Google Scholar 

  • Kaya M, Feingold S, Hettiarachchi K, Lee AP, Dayton PA (2010) Acoustic responses of monodisperse lipid encapsulated microbubble contrast agents produced by flow focusing. Bubble Sci Eng Technol 2(2):33–40. https://doi.org/10.1179/175889610X12779105661532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilroy JP, Klibanov AL, Wamhoff BR, Hossack JA (2012) Intravascular ultrasound catheter to enhance microbubble-based drug delivery via acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control 59(10):2156–2166. https://doi.org/10.1109/TUFFC.2012.2442

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilroy JP, Klibanov AL, Wamhoff BR, Bowles DK, Hossack JA (2014a) Localized in vivo model drug delivery with intravascular ultrasound and microbubbles. Ultrasound Med Biol 40(10):2458–2467. https://doi.org/10.1016/j.ultrasmedbio.2014.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilroy JP, Patil AV, Rychak JJ, Hossack JA (2014b) An IVUS transducer for microbubble therapies. IEEE Trans Ultrason Ferroelectr Freq Control 61(3):441–449. https://doi.org/10.1109/TUFFC.2014.2929

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilroy JP, Dhanaliwala AH, Klibanov A, Bowles DK, Wamhoff BR, Hossack JA (2015) Reducing neointima formation in a swine model with IVUS and sirolimus microbubbles. Ann Biomed Eng. In Press

    Google Scholar 

  • Klibanov AL, Rasche PT, Hughes MS, Wojdyla JK, Galen KP, Wible JH Jr, Brandenburger GH (2004) Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Invest Radiol 39(3):187–195

    Article  PubMed  Google Scholar 

  • Lanza GM, Abendschein DR, Hall CS, Marsh JN, Scott MJ, Scherrer DE, Wickline SA (2000) Molecular imaging of stretch-induced tissue factor expression in carotid arteries with intravascular ultrasound. Invest Radiol 35(4):227–234

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Ahn SG, Yoon J (2012) Endovascular stent grafting via the left radial artery for a spontaneous isolated dissecting rupture of the superior mesenteric artery. Korean Circ J 42(2):140–141. https://doi.org/10.4070/kcj.2012.42.2.140

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Wu W, Chung Y, Shih WY, Shih W-H, Zhou Q, Shung KK (2011) 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Trans Ultrason Ferroelectr Freq Control 58(11):2281–2288. https://doi.org/10.1109/TUFFC.2011.2085

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discovery 3(6):527–533. https://doi.org/10.1038/nrd1417

    Article  CAS  PubMed  Google Scholar 

  • Lindsey BD, Martin KH, Jiang X, Dayton PA (2016) Adaptive windowing in contrast-enhanced intravascular ultrasound imaging. Ultrasonics 70:123–135. https://doi.org/10.1016/j.ultras.2016.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Djuth F, Li X, Chen R, Zhou Q, Shung KK (2012) Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array. Ultrasonics 52(4):497–502. https://doi.org/10.1016/j.ultras.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Martin KH, Dayton PA, Jiang X (2014) A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61(5):870–880. https://doi.org/10.1109/TUFFC.2014.6805699

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T, Yu M, Chen Z, Fei C, Shung K, Zhou Q (2015) Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans Ultrason Ferroelectr Freq Control 62(1):97–107. https://doi.org/10.1109/TUFFC.2014.006679

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T, Zhou B, Hsiai TK, Shung KK (2016) A review of intravascular ultrasound-based multimodal intravascular imaging: the synergistic approach to characterizing vulnerable plaques. Ultrason Imag 38(5):314–331. https://doi.org/10.1177/0161734615604829

    Article  Google Scholar 

  • Maresca D, Renaud G, van Soest G, Li X, Zhou Q, Shung KK, de Jong N, van der Steen AFW (2013) Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers. Ultrasound Med Biol 39(4):706–713. https://doi.org/10.1016/j.ultrasmedbio.2012.10.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Maresca D, Skachkov I, Renaud G, Jansen K, van Soest G, de Jong N, van der Steen AFW (2014) Imaging microvasculature with contrast-enhanced ultraharmonic ultrasound. Ultrasound Med Biol 40(6):1318–1328. https://doi.org/10.1016/j.ultrasmedbio.2013.12.029

    Article  PubMed  Google Scholar 

  • Masuda J, Terashima M, Yokoyama M (2001) Improved reproducibility of intravascular ultrasound assessment of coronary in-stent neointima with the use of an echogenic contrast agent. Jpn Circ J 65(7):632–636. https://doi.org/10.1253/jcj.65.632

    Article  CAS  PubMed  Google Scholar 

  • Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG, O’Rourke RA, Abrams J, Bates ER, Brodie BR, Douglas PS, Gregoratos G, Hlatky MA, Hochman JS, Kaul S, Tracy CM, Waters DD, Winters JWL (2001) American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (ivus)33A report of the american college of cardiology task force on clinical expert consensus documents developed in collaboration with the european society of cardiology endorsed by the society of cardiac angiography and interventions. J Am Coll Cardiol 37(5):1478–1492. https://doi.org/10.1016/S0735-1097(01)01175-5

    Article  CAS  PubMed  Google Scholar 

  • Naghavi M, Falk E (2010) Asymptomatic atherosclerosis: from vulnerable plaque to vulnerable patient, vol 2. Humana Press, Totowa, NJ

    Google Scholar 

  • Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206

    Article  PubMed  Google Scholar 

  • Nair A, Margolis MP, Kuban BD, Vince DG (2007) Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. EuroIntervention 3(1):113–120

    PubMed  Google Scholar 

  • O’Donnell M, Thomas LJ (1992) Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging. IEEE Trans Ultrason Ferroelectr Freq Control 39(3):366–380. https://doi.org/10.1109/58.143171

    Article  PubMed  Google Scholar 

  • O’Donnell M, Eberle MJ, Stephens DN, Litzza JL, San Vicente K, Shapo BM (1997) Synthetic phased arrays for intraluminal imaging of coronary arteries. IEEE Trans Ultrason Ferroelectr Freq Control 44(3):714–721. https://doi.org/10.1109/58.658335

    Article  Google Scholar 

  • Phillips P (2001) Contrast pulse sequences (CPS): imaging non-linear microbubbles. Proc 2001 IEEE Ultrason Symp 2:1739–1745

    Google Scholar 

  • Phillips P, Gardner E (2004) Contrast-agent detection and quantification. Eur Radiol 14(Suppl 8):P4–10

    PubMed  Google Scholar 

  • Phillips LC, Klibanov AL, Bowles DK, Ragosta M, Hossack JA, Wamhoff BR (2010) Focused in vivo delivery of plasmid DNA to the porcine vascular wall via intravascular ultrasound destruction of microbubbles. J Vasc Res 47(3):270–274. https://doi.org/10.1159/000258905

    Article  CAS  PubMed  Google Scholar 

  • Phillips LC, Dhanaliwala AH, Klibanov AL, Hossack JA, Wamhoff BR (2011) Focused ultrasound-mediated drug delivery from microbubbles reduces drug dose necessary for therapeutic effect on neointima formation–brief report. Arterioscler Thromb Vasc Biol 31(12):2853–2855. https://doi.org/10.1161/ATVBAHA.111.238170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA (2012) Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery. IEEE Trans Ultrason Ferroelectr Freq Control 59(7):1596–1601. https://doi.org/10.1109/TUFFC.2012.2359

    Article  PubMed  Google Scholar 

  • Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Passantino L, Schneider M (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45(2):89–95. https://doi.org/10.1097/RLI.0b013e3181c5927c

    Article  CAS  PubMed  Google Scholar 

  • Ragosta M (2015) Left main coronary artery disease: importance, diagnosis, assessment, and management. Curr Prob Cardiology 40(3):93–126. https://doi.org/10.1016/j.cpcardiol.2014.11.003

    Article  Google Scholar 

  • Regar E, Thury A, van der Giessen WJ, Sianos G, Vos J, Smits PC, Carlier SG, de Feyter P, Foley DP, Serruys PW (2003) Sonotherapy, antirestenotic therapeutic ultrasound in coronary arteries: The first clinical experience. Catheter Cardiovasc Interv 60(1):9–17. https://doi.org/10.1002/ccd.10617

    Article  CAS  PubMed  Google Scholar 

  • Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Granillo GA, McFadden EP, Valgimigli M, van Mieghem CAG, Regar E, de Feyter PJ, Serruys PW (2006) Coronary plaque composition of nonculprit lesions, assessed by in vivo intracoronary ultrasound radio frequency data analysis, is related to clinical presentation. Am Heart J 151(5):1020–1024. https://doi.org/10.1016/j.ahj.2005.06.040

    Article  PubMed  Google Scholar 

  • Ruiz EMG, Papaioannou TG, Vavuranakis M, Stefanadis C, Naghavi M, Kakadiaris IA (2012) Analysis of contrast-enhanced intravascular ultrasound images for the assessment of coronary plaque neoangiogenesis: another step closer to the identification of the vulnerable plaque. Curr Pharm Des 18(15):2207–2213

    Article  CAS  PubMed  Google Scholar 

  • Rychak JJ, Klibanov AL, Ley KF, Hossack JA (2007) Enhanced targeting of ultrasound contrast agents using acoustic radiation force. Ultrasound Med Biol 33(7):1132–1139. https://doi.org/10.1016/j.ultrasmedbio.2007.01.005

    Article  PubMed  Google Scholar 

  • Satir S, Degertekin FL (2015) A nonlinear lumped model for ultrasound systems using CMUT arrays. IEEE Trans Ultrason Ferroelectr Freq Control 62(10):1865–1879. https://doi.org/10.1109/TUFFC.2015.007145

    Article  PubMed  PubMed Central  Google Scholar 

  • Schartl M, Bocksch W, Koschyk DH, Voelker W, Karsch KR, Kreuzer J, Hausmann D, Beckmann S, Gross M (2001) Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation 104(4):387–392

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Gorelikov I, Williams R, Matsuura N (2010) Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy. Langmuir 26(17):13855–13860. https://doi.org/10.1021/la102272d

    Article  CAS  PubMed  Google Scholar 

  • Shekhar H, Doyley MM (2013) The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: Implications for high-frequency nonlinear imaging. J Acoust Soc Am 133(5):3145–3158. https://doi.org/10.1121/1.4798677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhar H, Huntzicker S, Awuor I, Doyley MM (2016) Chirp-coded ultraharmonic imaging with a modified clinical intravascular ultrasound system. Ultrason Imaging 38(6):403–419. https://doi.org/10.1177/0161734615618639

    Article  PubMed  Google Scholar 

  • Shen C-C, Chou Y-H, Li P-C (2005) Pulse inversion techniques in ultrasonic nonlinear imaging. J Med Ultrasound 13(1):3–17. https://doi.org/10.1016/S0929-6441(09)60073-4

    Article  Google Scholar 

  • Slager CJ, Wentzel JJ, Schuurbiers JCH, Oomen JAF, Kloet J, Krams R, von Birgelen C, van der Giessen WJ, Serruys PW, de Feyter PJ (2000) True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102(5):511–516. https://doi.org/10.1161/01.cir.102.5.511

    Article  CAS  PubMed  Google Scholar 

  • Song Z-Z, Zhang Y-M (2015) Contrast-enhanced ultrasound imaging of the vasa vasorum of carotid artery plaque. World J Radiol 7(6):131–133. https://doi.org/10.4329/wjr.v7.i6.131

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephens DN, Truong UT, Nikoozadeh A, Oralkan Ö, Seo CH, Cannata J, Dentinger A, Thomenius K, de la Rama A, Nguyen T, Lin F, Khuri-Yakub P, Mahajan A, Shivkumar K, O’Donnell M, Sahn DJ (2012) First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter. J Ultrasound Med: Off J Am Inst Ultrasound Med 31(2):247–256

    Article  Google Scholar 

  • Talu E, Hettiarachchi K, Zhao S, Powell RL, Lee AP, Longo L, Dayton PA (2007) Possible method for improving sensitivity in molecular imaging. Molec Imag 6(6):384–392

    Article  Google Scholar 

  • Thim T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL, Drouet L, Paaske WP, Bøtker HE, Falk E (2000) Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ: Cardiovasc Imag 5(384):391–516. https://doi.org/10.1161/circimaging.109.919357

    Article  Google Scholar 

  • Unnikrishnan S, Klibanov AL (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR Am J Roentgenol 199(2):292–299. https://doi.org/10.2214/AJR.12.8826

    Article  PubMed  Google Scholar 

  • van der Steen AFW, Ra Baldewsing, Levent Degertekin F, Emelianov S, Frijlink ME, Furukawa Y, Goertz D, Karaman M, Khuri-Yakub PT, Kim K, Mastik F, Moriya T, Oralkan O, Saijo Y, Ja Schaar, Serruys PW, Sethuraman S, Tanaka A, Vos HJ, Witte R, O’Donnell M (2006) IVUS beyond the horizon. EuroIntervention 2(1):132–142

    PubMed  Google Scholar 

  • van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release: Off J Control Release Soc 112(2):149–155. https://doi.org/10.1016/j.jconrel.2006.02.007

    Article  CAS  Google Scholar 

  • Vavuranakis M, Kakadiaris IA, O’Malley SM, Stefanadis C, Vaina S, Drakopoulou M, Mitropoulos I, Carlier S, Naghavi M (2005) Detection of luminal-intimal border and coronary wall enhancement in intravascular ultrasound imaging after injection of microbubbles and simultaneous sonication with transthoracic echocardiography. Circulation 112(1):e1–e2. https://doi.org/10.1161/circulationaha.104.479915

    Article  PubMed  Google Scholar 

  • Vavuranakis M, Kakadiaris IA, O’Malley SM, Papaioannou TG, Sanidas EA, Naghavi M, Carlier S, Tousoulis D, Stefanadis C (2008) A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. Int J Cardiol 130(1):23–29. https://doi.org/10.1016/j.ijcard.2007.07.170

    Article  PubMed  Google Scholar 

  • Vos HJ, Frijlink ME, Droog E, Goertz DE, Blacquière G, Gisolf A, de Jong N, van der Steen AFW (2005) Transducer for harmonic intravascular ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 52(12):2418–2422

    Article  PubMed  Google Scholar 

  • Wang H-W, Chai N, Wang P, Hu S, Dou W, Umulis D, Wang LV, Sturek M, Lucht R, Cheng J-X (2011) Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys Rev Lett 106(23):238106. https://doi.org/10.1103/PhysRevLett.106.238106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Martin KH, Huang W, Dayton PA, Jiang X (2016) Contrast enhanced superharmonic imaging for acoustic angiography using reduced form-factor lateral mode transmitters for intravascular and intracavity applications. IEEE Trans Ultrason Ferroelectr Freq Control. https://doi.org/10.1109/tuffc.2016.2619687

    Article  PubMed  Google Scholar 

  • Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5):473–483

    Article  CAS  PubMed  Google Scholar 

  • Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618. https://doi.org/10.1038/ncomms1627

    Article  CAS  PubMed  Google Scholar 

  • Wong SH, Kupnik M, Watkins RD, Butts-Pauly K, Khuri-Yakub BT (2010) Capacitive micromachined ultrasonic transducers for therapeutic ultrasound applications. IEEE Trans Bio-Med Eng 57(1):114–123. https://doi.org/10.1109/TBME.2009.2026909

    Article  Google Scholar 

  • Xuefeng Z, Lin D, Oralkan O, Khuri-Yakub B (2008) Fabrication of flexible transducer arrays with through-wafer electrical interconnects based on trench refilling with PDMS. J Microelectromech Syst 17(2):446–452

    Article  Google Scholar 

  • Yoon S, Williams J, Kang BJ, Yoon C, Cabrera-Munoz N, Jeong JS, Lee SG, Shung KK, Kim HH (2015) Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging. Sens Actuators, A 228:16–22. https://doi.org/10.1016/j.sna.2015.02.037

    Article  CAS  Google Scholar 

  • Yu FTH, Villanueva FS, Chen X (2014) Radial modulation contrast imaging using a 20-MHz single-element intravascular ultrasound catheter. IEEE Trans Ultrason Ferroelectr Freq Control 61(5):779–791. https://doi.org/10.1109/TUFFC.2014.6805692

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Xu R, Ouyang Q, Chen L, Dong B, Huihua Y (2010) Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions. Eur J Radiol 73(2):288–293. https://doi.org/10.1016/j.ejrad.2009.05.043

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful for valuable contributions made by current and former members of his research group (Adam J. Dixon, Ph.D., Joseph P. Kilroy, Ph.D., Ali H. Dhanaliwala, Ph.D., Shiying Wang, Ph.D., Linsey C. Phillips, Ph.D., and Johnny L Chen, B.S) and current and former University of Virginia colleagues: M. Ragosta, M.D., Alexander L. Klibanov, Ph.D., and Brian R. Wamhoff, Ph.D. The research program has been supported by NIH, University of Virginia Coulter Partnership, and the Virginia Commonwealth Health Research Board. Opinions expressed are those of the author and do not necessarily represent official views of sources of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Hossack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossack, J.A. (2020). Therapeutic IVUS and Contrast Imaging. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics