Skip to main content

Electronic Behavior of Nanocrystalline Silicon Thin Film Transistor

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

Thin film transistor (TFT) plays an important role for the fabrication of highly functional active matrix backplanes for large area display applications such as organic light emitting diodes (OLEDs). Nanocrystalline silicon (nc-Si) has recently achieved lot of interest over existing hydrogenated amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) due to its superior properties which makes it suitable channel material for the fabrication of TFTs. In present work, the physical insight into the nc-Si TFT device characteristics and device non idealities is reported which can provide important step for the production of high performance large area display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl. Phys. Lett. 24, 357–362 (1981)

    Google Scholar 

  2. M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, 6-bit digital VGA OLED. SID Int. Symp. Dig. Tech. Papers 31, 912–915 (2000)

    Article  Google Scholar 

  3. K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. (Wiley, West Sussex, England, 2003)

    Book  Google Scholar 

  4. P. Smith, D. Allee, C. Moyer, D. Loy, Flexible transistor arrays. Inf. Display 21, 18–22 (2005)

    Google Scholar 

  5. J.J. Lih, C.F. Sung, C.H. Li, T.H. Hsiao, H.H. Lee, Comparison of a-Si and poly-Si for AMOLED displays. J. Soc. Inform. Display 12, 367–371 (2004)

    Article  Google Scholar 

  6. J.H. Park, S.M. Han, Y.H. Choi, S.J. Kim, M.K. Han, “New In-Situ Process of Top Gate Nanocrystalline Silicon Thin Film Transistors Fabricated at 180° C for the Suppression of Leakage Current,” IEEE International Electron Devices Meeting, Washington, 2007, 10–12 Dec 10–12 2007, pp. 595–598

    Google Scholar 

  7. M.R. Esmaeili-Rad, Nanocrystalline Silicon Thin Film Transistor [PhD thesis], University of Waterloo, Canada, 2008

    Google Scholar 

  8. P. Sharma, N. Gupta, Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) top-gated thin film transistor (TFT) using Ashby’s, VIKOR and TOPSIS. J. Mat. Sci.: Mat. Electron. (Springer) 26, 9607–9613 (2015)

    Google Scholar 

  9. M.F. Ashby’s, Multi objective optimization in material design and selection. Acta Materialia. 48, 1792–1795 (2000)

    Google Scholar 

  10. S. Opricovic, G.H. Tzeng, Multicriteria planning of post-earthquake sustainable reconstruction. Comput.-Aided Civil Infrastruct. Eng. 17, 211–220 (2002)

    Article  Google Scholar 

  11. C. Hwang, K. Yoon, Multiple attribute decision making methods and application survey, vol. 186 (Business & Economics, Berlin, Springer, 2005)

    Google Scholar 

  12. R.B. Min, S. Wagner, Nanocrystalline silicon thin-film transistors with 50-nm-thick deposited channel layer, 10 cm2 V−1 s−1 electron mobility and 108 on/off current ratio. Appl. Phys. A 74, 541–543 (2002)

    Article  Google Scholar 

  13. I.C. Cheng, W. Sigurd, Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150 C. Appl. Phys. Lett. 80, 440–442 (2002)

    Article  Google Scholar 

  14. I.C. Cheng, W. Sigurd, Nanocrystalline silicon thin film transistors. IEE Proc.-Circ., Devices Syst. 150, 339–344 (2003)

    Article  Google Scholar 

  15. C.H. Lee, A. Sazonov, A. Nathan, “High mobility n-channel and p-channel nanocrystalline silicon thin-film transistors” IEEE International Electron Devices Meeting, IEDM Technical Digest. Washington, 5 Dec 2005, pp. 915–918

    Google Scholar 

  16. C.H. Lee, A. Sazonov, A. Nathan, High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 86, 222106-1-3 (2005)

    Google Scholar 

  17. T. Kamei, M. Kondo, A. Matsuda, A significant reduction of impurity contents in hydrogenated microcrystalline silicon films for increased grain size and reduced defect density. Jpn. J. Appl. Phys. 37, L265–L268 (1998)

    Article  Google Scholar 

  18. C.H. Lee, S. Andrei, N. Arokia, R. John, Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities. Appl. Phys. Lett. 89, 2101 (2006)

    Google Scholar 

  19. C.H. Lee, D. Striakhilev, A. Nathan, “Stability of nc-Si: H TFTs with silicon nitride gate dielectric. IEEE Trans. Electron Devices 54, 45–51 (2007)

    Article  Google Scholar 

  20. D.W. Kang, J.H. Park, S.M. Han, M.K. Han, The effects of nanocrystalline silicon thin film thickness on top-gate nanocrystalline silicon thin film transistor fabricated at 180°C. J. Semicond. Technol. Sci. 8, 111–114 (2008)

    Article  Google Scholar 

  21. H.J. Lee, A. Sazonov, A. Nathan, Leakage current mechanisms in top-gate nanocrystalline silicon thin film transistors. Appl. Phys. Lett. 92, 083509 (2008)

    Article  Google Scholar 

  22. I. Cheng, S. Wagner, S.E. Vallat, Contact resistance in nanocrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 55, 973–977 (2008)

    Article  Google Scholar 

  23. Y. Djeridane, K.H. Kim, S.H. Kim, J.H. Bae, J.Y. Jeong, J. Jang, Fabrication and characterization of ion-doped p-Type nanocrystalline silicon thin-film transistors. J. Korean Phys. Soc. 54, 437–440 (2009)

    Article  Google Scholar 

  24. A. Subramaniam, K.D. Cantley, H.J. Stiegler, R.A. Chapman, E.M. Vogel, Submicron ambipolar nanocrystalline silicon thin-film transistors and inverters. IEEE Trans. Electron Devices 59, 359–366 (2012)

    Article  Google Scholar 

  25. M. Fonrodona, J. Escarre, F. Villar, D Soler, J. Bertomeu, J. Andreu, A. Saboundji, N. Coulon, T. Mohammed-Brahim T, Nanocrystalline top-gate thin film transistors deposited at low temperature by Hot-Wire CVD on glass. IEEE Conference on Electron Devices, Spanish, 2–4 Feb 2005, pp. 183–186 (2005)

    Google Scholar 

  26. M. Fonrodona, J. Soler, F. Escarré, J. Villar, J. Bertomeu, A.S. Andreu, C. Nathalie, M.B. Tayeb, Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by hot-wire CVD on glass substrate. Thin Solid Films 501, 303–306 (2006)

    Article  Google Scholar 

  27. D. Dosev, T. Ytterdal, J. Pallares, L.F. Marsal, B. Iñíguez, DC SPICE model for nanocrystalline and microcrystalline silicon TFTs. IEEE Trans. Electron Devices 49, 1979–1983 (2002)

    Article  Google Scholar 

  28. D. Dosev, B. Iniguez, L.F. Marsal, J. Pallares, T. Ytterdal, Device simulations of nanocrystalline silicon thin-film transistors. Solid-State Electron. 47, 1917–1920 (2003)

    Article  Google Scholar 

  29. M. Estrada, A. Cerdeira, L. Resendiz, B. Iniguez, L.F. Marzal, J. Pallares, Effect of localized traps on the anomalous behavior of the transconductance in nanocrystalline TFTs. Microelectron. Reliab. 45, 1161–1166 (2005)

    Google Scholar 

  30. A. Cerdeira, M. Estrada, B. Iniguez, J. Pallares, L.F. Marsal, Modeling and parameter extraction procedure for nanocrystalline TFTs. Solid-State Electron. 48, 103–109 (2004)

    Article  Google Scholar 

  31. A.T. Hatzopoulos, L. Pappas, D.H. Tassis, N. Arpatzanis, C.A. Dimitriadis, F. Templier, M. Oudwan, Analytical current-voltage model for nanocrystalline silicon thin-film transistors. Appl. Phys. Lett. 89, 193504-1-3 (2006)

    Google Scholar 

  32. I. Pappas, C.A. Dimitriadis, F. Templier, M. Oudwan, G. Kamarinos, Above-threshold drain current model including band tail states in nanocrystalline silicon thin-film transistors for circuit implementation. J. Appl. Phys. 101, 84506-1-4 (2007)

    Google Scholar 

  33. M.R. Esmaeili-Rad, A. Sazonov, A. Nathan, Analysis of the off current in nanocrystalline silicon bottom-gate thin-film transistors. J. Appl. Phys. 103, 074502-1-6 (2008)

    Google Scholar 

  34. A. Ahnood, F. Li, K. Ghaffarzadeh, M.R. Esmaeili-Rad, A. Nathan, A. Sazonov, P. Servati, Non-ohmic contact resistance and field-effect mobility in nanocrystalline silicon thin film transistors. Appl. Phys. Lett. 93, 163503-1-3 (2008)

    Google Scholar 

  35. L.F. Mao, The quantum size effects on the surface potential of nanocrystalline silicon thin film transistors. Thin Solid Films 518, 3396–3401 (2010)

    Article  Google Scholar 

  36. T. Anutgan, M. Anutgan, I. Atilgan, B. Katircioglu, Capacitance analyses of hydrogenated nanocrystalline silicon based thin film transistor. Thin Solid Film. 519, 3914–3921 (2011)

    Article  Google Scholar 

  37. I.P. Steinke, P.P. Ruden, Percolation model for the threshold voltage of field-effect transistors with nanocrystalline channels. J. Appl. Phys. 111, 014510-1-5 (2012)

    Google Scholar 

  38. P. Sharma, N. Gupta, Threshold voltage modeling on nanocrystalline silicon thin-film transistors. J. Electron Devices 19, 1608–1612 (2014)

    Google Scholar 

  39. M.R. Esmaeili-Rad, A. Sazonov, A. Nathan, Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements. Appl. Phys. Lett. 91: 113511-1-3 (2007)

    Google Scholar 

  40. S.J. Kim, S.G. Park, S.B. Ji, M.K. Han, Effect of drain bias stress on stability of nanocrystalline silicon thin film transistors with various channel lengths. Jpn. J. Appl. Phys. 20, 04DH12 (2010)

    Google Scholar 

  41. P. Sharma, N. Gupta, Model for threshold voltage instability in top-gated nanocrystalline silicon thin film transistor. J. Comput. Electron. (Springer) 15, 666–671 (2016)

    Article  Google Scholar 

  42. C.M. Svensson, K.I. Lundstrom, Trap-assisted charge injection in MNOS structures. J. Appl. Phys. 44, 4657–4663 (1973)

    Article  Google Scholar 

  43. S.W. Wright, J.C. Anderson, Trapping centres in sputtered SiO2 films. Thin Solid Films 62, 89–96 (1979)

    Article  Google Scholar 

  44. H. Koelmans, H.C. De Graaff, Drift phenomena in CdSe thin film FET’s. Solid-State Electron. 10, 997–1000 (1967)

    Article  Google Scholar 

  45. M.J. Powell, Charge trapping instabilities in amorphous silicon silicon nitride thin film transistors. Appl. Phys. Lett. 43, 597–599 (1983)

    Article  Google Scholar 

  46. R.A. Street, Hydrogenated amorphous silicon (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  47. R.A. Street, C.C. Tsai, Fast and slow states at the interface of amorphous silicon and silicon nitride. Appl. Phys. Lett. 48, 1672–1674 (1986)

    Article  Google Scholar 

  48. A.R. Hepburn, J.M. Marshall, C. Main, M.J. Powell, C.V. Berkel, Metastable defects in amorphous silicon thin film transistors. Phys. Rev. Lett. 56, 2215–2218 (1986)

    Article  Google Scholar 

  49. C.V. Berkel, M. Powell, Resolution of amorphous silicon thin film transistor instability mechanisms using ambipolar transistors. Appl. Phys. Lett. 51, 1094–1096 (1987)

    Google Scholar 

  50. M. Stutzmann, W.B. Jackson, C.C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: a systematic study. Phys. Rev. B. 32, 23–47 (1985)

    Article  Google Scholar 

  51. M.J. Powell, C.V. Berkel, I.D. French, D.H. Nicholls, Bias dependence of instability mechanisms in amorphous silicon thin film transistors. Appl. Phys. Lett. 51, 1242–1244 (1987)

    Article  Google Scholar 

  52. M.J. Powell, C.V. Berkel, J.R. Hughes, Time and temperature dependence of instability mechanisms in amorphous silicon thin film transistors. Appl. Phys. Lett. 54, 1323–1325 (1989)

    Article  Google Scholar 

  53. R.A. Street, The origin of metastable states in a-Si:H. Solar Cells. 24, 211–221 (1988)

    Article  Google Scholar 

  54. G. Muller, On the generation and annealing of dangling bond defects in hydrogenated amorphous silicon. Appl. Phys. A 45, 41–51 (1988)

    Article  Google Scholar 

  55. M.J. Powell, S.C. Deane, W.I. Milne, Bias stress induced creation and removal of dangling bond states in amorphous silicon thin film transistors. Appl. Phys. Lett. 60, 207–209 (1992)

    Article  Google Scholar 

  56. S.C. Deane, R.B. Wehrspohn, M.J. Powell, Unification of the time and temperature dependence of dangling bond defect creation and removal in amorphous silicon thin film transistors, Phys. Rev. B. 58, 12 625–12 628 (1998)

    Google Scholar 

  57. F.R. Libsch, J. Kanicki, Bias stress induced stretched exponential time dependence of charge injection and trapping in amorphous thin film transistors. Appl. Phys. Lett. 62, 1286–1288 (1993)

    Article  Google Scholar 

  58. D.L. Staebler, C.R. Wronski, Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys. 51, 3262–3268 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, P., Gupta, N. (2018). Electronic Behavior of Nanocrystalline Silicon Thin Film Transistor. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_8

Download citation

Publish with us

Policies and ethics