Skip to main content

Design, Development and Application of Nanocoatings

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

Coatings can be defined as the application of one material on the other material usually known as substrate. They are mainly applied on the material to protect it from any degradation which occurs due to environmental conditions. They act as an interface between the substrate and the environment. Moreover, they are also used for decorative purposes. Nanocoatings are those coatings in which the size of a particle is in the range of 1–1000 nm at least in one dimension. Nanocoatings provide more wear resistance attributed to its higher toughness and hardness to the substrate as compared to other conventional coatings. They also provide antimicrobial, wrinkle resistance, stain resistance, hydrophobic and hydrophilic characteristics, UV protection and antistatic properties affecting the bulk properties of the substrate material. Nanocoatings can be manufactured by mainly two methods: vapour phase method and liquid phase method. Vapour phase method includes chemical vapour deposition, laser ablation, vapour condensation, plasma arc and flame synthesis processes. Liquid phase method includes sol–gel, precipitation, electrolysis, microemulsion and hydrothermal processes. Nanocoatings are used in aircraft (landing gears and engines), industrial rolls, hydraulic shafts, boiler tubes, turbines and pumps to prevent corrosion and erosion problems. They are also used on cars, pens, watches and cosmetics for decorative purposes. Nanocoatings are used on money bills so as to prevent forgery. This chapter discusses in detail about the nanocoatings. Efforts have also been made to summarize the various processing techniques for their fabrication. Effect of nanocoatings on structural, mechanical and corrosion behaviour is also discussed. It is expected that the present chapter will be useful in designing and developing nanocoatings for wide industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Tracton (ed.) Coatings technology handbook. (CRC press, USA, 2005)

    Google Scholar 

  2. D.J. Branagan et al., High-performance nanoscale composite coatings for boiler applications. J. Therm. Spray Technol. 14(2), 196–204 (2005)

    Article  Google Scholar 

  3. L. Barchi, U. Bardi, S. Caporali, M. Fantini, A. Scrivani, A. Scrivani, Electroplated bright aluminium coatings for anticorrosion and decorative purposes. Prog. Org. Coat. 67(2), 146–151 (2010)

    Article  Google Scholar 

  4. B.P. Reinherz, For Decorative Coating of Glass and Ceramic Articles. U.S. Patent No. 4,892,847, 9 Jan 1990

    Google Scholar 

  5. J.C. Welch, S. Chakraborty, “Nano-coatings for articles.” U.S. Patent Application No. 13/022,047

    Google Scholar 

  6. Hyung-Jun Kim, Chang-Hee Lee, Soon-Young Hwang, Superhardnano WC–12% Co coating by cold spray deposition. Mater. Sci. Eng., A 391(1), 243–248 (2005)

    Google Scholar 

  7. Zhenyu Wang, Enhou Han, Wei Ke, Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog. Org. Coat. 53(1), 29–37 (2005)

    Article  Google Scholar 

  8. S. Radhakrishnan et al., Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim. Acta 54(4), 1249–1254 (2009)

    Article  Google Scholar 

  9. Roya Dastjerdi, Majid Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79(1), 5–18 (2010)

    Article  Google Scholar 

  10. G. Wu et al., A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings. Mat. Sci. Eng.: B 78(2), 135–139 (2000)

    Google Scholar 

  11. Mark T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8(1), 127–133 (2003)

    Article  Google Scholar 

  12. A.R. Gupta, V. Kant, Research article synthesis, characterization and biomedical applications of nanoparticles, Vijayta Gupta Department of Chemistry, University of Jammu, Jammu-180006, India. Sci. Int. 1(5) (2013)

    Google Scholar 

  13. P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez Carreno, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2006), pp. 403–482

    Google Scholar 

  14. Mark T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8(1), 127–133 (2003)

    Article  Google Scholar 

  15. F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. J. Aerosol Sci. 29(5), 511–535 (1998)

    Google Scholar 

  16. H. Hahn, Gas phase synthesis of nanocrystallinematerials. Nanostruct. Mat. 9(1), 3–12 (1997)

    Google Scholar 

  17. S. Abbott, N. Holmes, Nanocoatings: Principles and Practice: From Research to Production. (DEStech Publications, Inc, USA, 2013)

    Google Scholar 

  18. C.F. Powell, J.H. Oxley, J.M. Blocher Jr., Vapor Deposition (Wiley, New York, 1967)

    Google Scholar 

  19. K. Reichelt, X. Jiang, The preparation of thin films by physical vapour deposition methods. Thin Solid Films 191(1), 91–126 (1990)

    Article  Google Scholar 

  20. D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing. (William Andrew, New York, 2010)

    Google Scholar 

  21. G. Håkansson et al., Microstructures of TiN films grown by various physical vapour deposition techniques. Surf. Coat. Technol. 48(1), 51–67 (1991)

    Google Scholar 

  22. J.-H. Park, T.S. Sudarshan (ed.), Chemical Vapor Deposition, vol. 2. (ASM international, USA, 2001)

    Google Scholar 

  23. K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater Sci. 48(2), 57–170 (2003)

    Article  Google Scholar 

  24. J.O. Carlsson, P.M. Martin, Chemical vapor deposition. Handbook of Deposition Technologies for Films and Coatings (2010), pp. 314–63

    Google Scholar 

  25. B.A. Campbell, A. Bryant, N.E. Miller, Chemical Vapor Deposition Process. U.S. Patent No. 4,547,404. 15 Oct. 1985

    Google Scholar 

  26. M. Gupta et al., Initiated chemical vapor deposition (iCVD) of conformal polymeric nanocoatings for the surface modification of high-aspect-ratio pores. Chem Mat 20(4), 1646–1651 (2008)

    Google Scholar 

  27. F.E. Kruis, H. Fissan, A. Peled. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29(5), 511–535 (1998)

    Google Scholar 

  28. M. Aliofkhazraei, Nanocoatings: Size Effect in Nanostructured Films. (Springer Science & Business Media, Berlin, 2011)

    Google Scholar 

  29. Cao Qin, Sylvain Coulombe, Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process. Plasma Sources Sci. Technol. 16(2), 240 (2007)

    Article  Google Scholar 

  30. J.H. Ahn, E.P. Song, S.H. Lee, N.J. Kim, Wear resistance of plasma-sprayed Al2O3-TiO2 nanocoatings. Key Eng. Mater. 345–346, 641–644 (2007)

    Article  Google Scholar 

  31. Bhaskaran Manjith Kumar, Subramshu Shekar Bhattacharya, Flame synthesis and characterization of nanocrystalline titania powders. Proces Appl Ceramics 6, 165–171 (2012)

    Article  Google Scholar 

  32. Hendrik K. Kammler, Lutz Mädler, Sotiris E. Pratsinis, Flame synthesis of nanoparticles. Chem. Eng. Technol. 24(6), 583–596 (2001)

    Article  Google Scholar 

  33. Karsten Wegner, Wendelin J. Stark, Sotiris E. Pratsinis, Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity. Mater. Lett. 55(5), 318–321 (2002)

    Article  Google Scholar 

  34. Wendelin J. Stark, Sotiris E. Pratsinis, Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2), 103–108 (2002)

    Article  Google Scholar 

  35. J. Weber, Method for Manufacturing a Medical Device Having a Coated Portion by Laser Ablation. U.S. Patent No. 6,517,888, 11 Feb 2003

    Google Scholar 

  36. D.B. Chrisey, G.K. Hubler (ed.), Pulsed Laser Deposition of Thin Films, vol. 3 (1994)

    Google Scholar 

  37. Alfredo M. Morales, Charles M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)

    Article  Google Scholar 

  38. B.N. Chichkov, et al., Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63(2) (1996): 109–115

    Google Scholar 

  39. C. Momma et al., Short-pulse laser ablation of solid targets. Opt. Commun. 129(1), 134–142 (1996)

    Google Scholar 

  40. J.L. Arias, et al., Micro-and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 24(20), 3403–3408 (2003)

    Google Scholar 

  41. LYS Lee, Research Summary, (https://www.polyu.edu.hk/abct/en/staff-singledemo376a2.html?id=72). Accessed on 22 Aug 2016

  42. W. Dissanayaka Wijesooriyage, Electrochemical Deposition and Characterization of Thermoelectric Thin Films of (BixSb1-x) 2Te3. (2011), p. 20

    Google Scholar 

  43. J. Eskhult, Electrochemical Deposition of Nanostructured Metal/Metal-Oxide Coatings (2007), p. 11

    Google Scholar 

  44. Gareth J. Owens, Rajendra K. Singh, Farzad Foroutan, Mustafa Alqaysi, Cheol-Min Han, Chinmaya Mahapatra, Hae-Won Kim, Jonathan C. Knowles, Sol–gel based materials for biomedical applications. Prog. Mater Sci. 77, 1–79 (2016)

    Article  Google Scholar 

  45. C.A. Milea, C. Bogatu, A. Duta, The influence of parameters in silica sol-gel process. Bull. Transilvania Univ. Brasov 4(53), 59–66 (2011)

    Google Scholar 

  46. Sol-Gel Technology, Chemat Technology A Total Sol-Gel Solution. (http://www.chemat.com/chemattechnology/SolGel.aspx). Accessed on 22 Aug 2016

  47. S. Sakka, Handbook of Sol-Gel Science and Technology. 1. Sol-Gel Processing, vol. 1. (Springer Science & Business Media, Berlin, 2005)

    Google Scholar 

  48. A.C. Pierre, Introduction to Sol-Gel Processing, vol. 1. (Springer Science & Business Media, Berlin, 2013), pp. 12–15

    Google Scholar 

  49. M.C. Kuo, S.K. Yen, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng., C 20(1), 153–160 (2002)

    Article  Google Scholar 

  50. Y. Zhang, T.A.O. Jie, Y. Pang, W. Wei, W. Tao, Electrochemical deposition of hydroxyapatite coatings on titanium. Trans. Nonferrous Metals Soc. China 16(3), 633–637 (2006)

    Google Scholar 

  51. B. Ben-Nissan, A. Milev, R. Vago. Morphology of sol–gel derived nano-coated coralline hydroxyapatite. Biomaterials 25(20), 4971–4975 (2004)

    Google Scholar 

  52. Hamed Mazaheri, Saeed Reza Allahkaram, Deposition, characterization and electrochemical evaluation of Ni–P–nano diamond composite coatings. Appl. Surf. Sci. 258(10), 4574–4580 (2012)

    Article  Google Scholar 

  53. M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau, I.M. Miranda Salvado, M.G.S. Ferreira, Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochimica Acta 51(2), 208–217 (2005)

    Google Scholar 

  54. S.V. Lamaka, M.F. Montemor, A.F. Galio, M.L. Zheludkevich, C. Trindade, L.F. Dick, M.G.S. Ferreira, Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim. Acta 53(14), 4773–4783 (2008)

    Article  Google Scholar 

  55. Abdel Salam Hamdy, Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Mater. Lett. 60(21), 2633–2637 (2006)

    Article  Google Scholar 

  56. R.I.M. Asri, W.S.W. Harun, M.A. Hassan, S.A.C. Ghani, Z. Buyong, A review of hydroxyapatite-based coating techniques: sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 57, 95–108 (2016)

    Article  Google Scholar 

  57. T.W.I. Solgel, (http://www.twi-global.com/capabilities/materials-and-corrosion-management/surface-engineering-and-advanced-coatings/sol-gel/). Accessed on 22 Aug 2016

  58. M. Lira-Cantú, A.M. Sabio, A. Brustenga, P. Gómez-Romero, Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells. Solar Energy Mat. Solar Cells 87(1), 685–694 (2005)

    Google Scholar 

  59. N. Selvakumar, H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar Energy Mat. Solar Cells 98, 1–23 (2012)

    Google Scholar 

  60. C. Wolf, C. Rüssel, Sol-gel formation of zirconia: preparation, structure and rheology of sols. J. Mat. Sci. 27(14), 3749–3755 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallav Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Singh, A., Mittal, S., Mudgal, D., Gupta, P. (2018). Design, Development and Application of Nanocoatings. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_7

Download citation

Publish with us

Policies and ethics