Skip to main content

Application of Nanomaterials in Civil Engineering

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

The potential use of carbon nanotubes, SiO2, TiO2, Fe2O3, CuO, ZrO2, ZnO2, Al2O3, CaCO3, Cr2O3 and Ag nanoparticles in the civil engineering has been explored in this article. Most of the studies showed that addition of nanomaterials in appropriate quantity improved the strength and durability properties but decreased setting time as well as workability of cementitious composites. The other challenges include high cost, environmental and health risks associated with nanomaterials. That is why the comprehensive recommendations for the utilization of nanomaterials in day-to-day construction practice are still awaited. Also, a study to evaluate the corrosion behaviour of graphene and nano-TiO2-incorporated steel-reinforced cementitious composite has been undertaken. The nanoadmixed composite showed lower corrosion rate compared to uninhibited specimens at early ages. However, more results are required involving fairly longer period of time to establish graphene and nano-TiO2 as corrosion inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Feynman, There’s plenty of room at the bottom (reprint from the speech given at the annual meeting of the west coast section of the American Physical Society). Eng. Sci. 23, 22–36 (1960)

    Google Scholar 

  2. K. Drexler, Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. 78, 5275–5278 (1981)

    Article  Google Scholar 

  3. W.A. Goddard, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate, Handbook of nanoscience engineering and technology, second ed., CRC Press, (2007)

    Google Scholar 

  4. S. Lee, W. Kriven, Synthesis and hydration study of Portland cement components prepared by organic steric entrapment method. Mater. Struct. 38, 87–92 (2005)

    Article  Google Scholar 

  5. K. Sobolev, M.F. Gutierrez, How nanotechnology can change the concrete world: Part 2. Am. Ceram. Soc. Bull. 84, 16–19 (2005)

    Google Scholar 

  6. Z. Ge, Z. Gao, Applications of nanotechnology and nanomaterials in construction, First International Conference on Construction in Developing Countries (ICCIDC–I), Advancing and Integrating Construction Education, Research & Practice, (Karachi, Pakistan 2008), pp. 235–240

    Google Scholar 

  7. G.Y. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 34, 1043–1049 (2004)

    Article  Google Scholar 

  8. H. Irie, K. Sunada, K. Hashimoto, Recent developments in TiO2 photocatalysis: Novel applications to interior ecology materials and energy saving systems. Electrochem. 72, 807–812 (2004)

    Google Scholar 

  9. C.W. Lam, J.T. James, R. McCluskey, S. Arepalli, R.L. Hunter, A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 36, 189–217 (2006)

    Article  Google Scholar 

  10. L.H. Ding, J. Stilwell, T.T. Zhang, O. Elboudwarej, H.J. Jiang, J.P. Selegue, P.A. Cooke, J.W. Gray, F.Q.F. Chen, Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 5, 2448–2464 (2005)

    Article  Google Scholar 

  11. S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670–8673 (2007)

    Article  Google Scholar 

  12. C. Blaise, F. Gagne, J.F. Ferard, P. Eullaffroy, Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. 23, 591–598 (2008)

    Article  Google Scholar 

  13. A. Rincon, C. Pulgarin, Bactericidal action of illuminated TiO2 on pure escherichia coli and natural bacterial consortia: Post-irradiation events in the dark and assessment of the effective disinfection time. Appl. Catal. B 49, 99–112 (2004)

    Article  Google Scholar 

  14. E.J. Wolfrum, J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest, W.A. Jacoby, Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide coated surfaces. Environ. Sci. Technol. 36, 3412–3419 (2002)

    Article  Google Scholar 

  15. L.K. Adams, D.Y. Lyon, P.J.J. Alvarez, Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, 3527–3532 (2006)

    Article  Google Scholar 

  16. K. Fujiwara, H. Suematsu, E. Kiyomiya, M. Aoki, M. Sato, N. Moritoki, Size dependent toxicity of silica nanoparticles to chlorella kessleri. J. Environ. Sci. Health A. 43, 1167–1173 (2008)

    Article  Google Scholar 

  17. D. Dutta, S.K. Sundaram, J.G. Teeguarden, B.J. Riley, L.S. Fifield, J.M. Jacobs, S.R. Addleman, G.A. Kaysen, B.M. Moudgil, T.J. Weber, Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100, 303–315 (2007)

    Article  Google Scholar 

  18. Z. Chen, H.A. Meng, G.M. Xing, C.Y. Chen, Y.L. Zhao, G.A. Jia, T.C. Wang, H. Yuan, C. Ye, F. Zhao, Z.F. Chai, C.F. Zhu, X.H. Fang, B.C. Ma, L.J. Wan, Acute toxicological effects of copper nanoparticles. Toxicol. Lett. 163, 109–120 (2006)

    Article  Google Scholar 

  19. V. Aruoja, H.C. Dubourguier, K. Kasemets, A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 407, 1461–1468 (2009)

    Article  Google Scholar 

  20. K. Kasemets, A. Ivask, H.C. Dubourguier, A. Kahru, Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. Vitro. 23, 1116–112 (2009)

    Google Scholar 

  21. M. Holman, Nanomaterial Forecast: Vols and applications, ICON Nanomaterial Environmental Health and Safety Research Needs Assessment, (Lux Research: Houston, TX, 2007)

    Google Scholar 

  22. M.A. Ahmed, Y.A. Hassanean, K.A. Assaf, M.A. Shawkey, Fascinating improvement in mechanical properties of cement mortar using multiwall carbon nanotubes and ferrite nanoparticles. Int. J. Struct. Civ. Eng. Res. 4, 159–170 (2015)

    Google Scholar 

  23. S. Iijima, Carbon nanotubes: Past, present, and future. Phys. B 323, 1–5 (2002)

    Article  Google Scholar 

  24. S. Kumar, P. Kolay, S. Malla, S. Mishra, Effect of multiwalled carbon nanotubes on mechanical strength of cement paste. J. Mater. Civ. Eng. 24, 84–91 (2012)

    Article  Google Scholar 

  25. T. Manzur, N. Yazdani, Strength enhancement of cement mortar with carbon nanotubes: Early results and potential. Transp. Res. Record. 2142, 102–108 (2010)

    Article  Google Scholar 

  26. T.C. Madhavi, P. Pavithra, B.S. Sushmita, S.B. Vamsi, P. Surajit, Effect of multiwalled carbon nanotubes on mechanical properties of concrete. Int. J. Sci. Res. 2, 166–168 (2013)

    Google Scholar 

  27. L. Małgorzata, Carbon nanotubes influence on the compressive strength of cement composites. Tech. Trans. Civ. Eng. 1, 5–11 (2014)

    Google Scholar 

  28. P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74, 255–269 (1991)

    Article  Google Scholar 

  29. M. Saafi, P. Romine, Nano and micro technology. Concr. Int. 27, 28–34 (2005)

    Google Scholar 

  30. G.B. Song, H.C. Gu, Y.L. Mo, Smart aggregates: Multifunctional sensors for concrete structures-A tutorial and a review. Smart Mater. Struct. 17, 1–17 (2008)

    Google Scholar 

  31. W. Zhang, J. Suhr, N. Koratkar, Carbon nanotube/polycarbonate composites as multifunctional strain sensors. J. Nanosci. Nanotechnol. 6, 960–964 (2006)

    Article  Google Scholar 

  32. G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Single-wall carbon nanotube based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21, 8487–8494 (2005)

    Article  Google Scholar 

  33. T. Nochaiya, A. Chaipanich, Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement based materials. Appl. Surf. Sci. 257, 1941–1945 (2011)

    Article  Google Scholar 

  34. A. Chaipanich, T. Nochaiya, W. Wongkeo, P. Torkittikul, Compressive strength and microstructure of carbon nanotubes-fly ash cement composites. Mater. Sci. Eng. 527, 1063–1067 (2010)

    Article  Google Scholar 

  35. R.K.A. Al-Rub, A.I. Ashour, B.M. Tyson, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Const. Build. Mater. 35, 647–655 (2012)

    Article  Google Scholar 

  36. M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 40, 1052–1059 (2010)

    Article  Google Scholar 

  37. Z.S. Metaxa, M.S. Konsta-Gdoutos, S.P. Shah, Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 36, 25–32 (2013)

    Article  Google Scholar 

  38. S. Musso, J.M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 69, 1985–1990 (2009)

    Article  Google Scholar 

  39. J. Luo, Z. Duan, H. Li, The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys. Status Solidi A 206, 2783–2790 (2009)

    Google Scholar 

  40. F. Collins, J. Lambert, W.H. Duan, The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures. Cem. Concr. Compos. 34, 201–207 (2012)

    Article  Google Scholar 

  41. A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20, 65–73 (2008)

    Article  Google Scholar 

  42. A.M. Hunashyal, S.J. Lohitha, S.S. Quadri, N.R. Banapurmath, Experimental investigation of the effect of carbon nanotubes and carbon fibres on the behaviour of plain cement composite beams. IES J. Part A: Civ. Struct. Eng. 4, 29–36 (2011)

    Google Scholar 

  43. M.H. Zhang, H. Li, Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr. Build. Mater. 25, 608–616 (2011)

    Article  Google Scholar 

  44. S. Hussain, K. Sastry, Study of strength properties of concrete by using micro-silica and nano-silica. Int. J. Res. Eng. Technol. 3, 103–108 (2014)

    Google Scholar 

  45. Q. Ye, Z.N. Zhang, D.Y. Kong, R.S. Chen, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21, 539–545 (2007)

    Article  Google Scholar 

  46. L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, J.A. Labrinca, Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Constr. Build. Mater. 24, 1432–1437 (2010)

    Article  Google Scholar 

  47. B.W. Jo, C.H. Kim, G.H. Tae, J.B. Park, Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 21, 1351–1355 (2007)

    Article  Google Scholar 

  48. B. Hasan, S. Nihal, Comparative study of the characteristics of nanosilica, silicafume and fly-ash incorporated cement mortars. Mater. Res. 17, 570–582 (2014)

    Article  Google Scholar 

  49. L. Singh, S. Bhattacharyya, U. Sharma, G. Mishra, S. Ahalawat, Microstructure improvement of cementitious systems using nanomaterials: A key for enhancing the durability of concrete. Mechanical and Physics of Creep, Shrinkage and Durability of Concreate ASCE (2013) 293–300

    Google Scholar 

  50. A. Boshehrian, P. Hosseini, Effect of nano-SiO2 particles on properties of cement mortar applicable for ferrocement elements. Concr. Res. 2, 167–180 (2011)

    Google Scholar 

  51. H. Bahadori, P. Hosseini, Reduction of cement consumption by the aid of silica nanoparticles. J. Civil Eng. Manag. 18, 416–425 (2012)

    Article  Google Scholar 

  52. A. Heidari, D. Tavakoli, Properties of concrete incorporating silica fume and nano-SiO2. Ind. J. Sci. Technol. 6, 108–112 (2013)

    Google Scholar 

  53. P. Zhang, X. Dai, J. Gao, P. Wang, Effect of nano-SiO2 particles on fracture properties of concrete composite containing fly ash. Curr. Sci. 108, 2035–2043 (2015)

    Google Scholar 

  54. L. Senff, J.A. Labrinca, V.M. Ferreira, D. Hotza, W.L. Repette, Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23, 2487–2491 (2009)

    Article  Google Scholar 

  55. A.K. Rana, S.B. Rana, A. Kumari, V. Kiran, Significance of nanotechnology in construction engineering. Int. J. Recent Trends Eng. 1, 46–48 (2009)

    Google Scholar 

  56. N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and applications (Wiley, New York, 1989)

    Google Scholar 

  57. B. Ruot, A. Plassais, F. Olive, L. Guillot, L. Bonafous, TiO2-containing cement pastes and mortars: Measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test. Sol. Energy 83, 1794–1801 (2009)

    Article  Google Scholar 

  58. G.L. Guerrini, Photocatalytic performances in a city tunnel in Rome: NOx monitoring results. Constr. Build. Mater. 27, 165–175 (2012)

    Article  Google Scholar 

  59. A. Nazari, R. Shadi, R. Sharin, S.F. Shamekhi, A. Khademno, Improvement in the mechanical properties of the cementitious composite by using TiO2 nanoparticles. J. Am. Sci. 6, 98–101 (2010)

    Google Scholar 

  60. A. Nazari, R. Shadi, R. Sharin, S.F. Shamekhi, A. Khademno, Assessment of the effects of the cement paste composite in presence TiO2 nanoparticles. J. Am. Sci. 6, 43–46 (2010)

    Google Scholar 

  61. E. Mohseni, M. Ranjbar, K. Tsavdaridis, Durability properties of high-performance concrete incorporating nano-TiO2 and fly ash. Am. J. Eng. Appl. Sci. 8, 519–526 (2015)

    Article  Google Scholar 

  62. A. Nazari, R. Shadi, R. Sharin, S.F. Shamekhi, A. Khademno, Benefits of Fe2O3 nanoparticles in concrete mixing matrix. J. Am. Sci. 6, 102–106 (2010)

    Google Scholar 

  63. A. Nazari, R. Shadi, R. Sharin, S.F. Shamekhi, A. Khademno, The effects of incorporation Fe2O3 nanoparticles on tensile and flexural strength of concrete. J. Am. Sci. 6, 90–93 (2010)

    Google Scholar 

  64. N.A. Yazdi, M.R. Arefi, E. Mollaahmadi, B.A. Nejand, To study the effect of adding Fe2O3 nanoparticles on the morphology properties and microstructure of cement mortar. Life Sci. J. 8, 550–554 (2011)

    Google Scholar 

  65. A. Khoshakhlagh, A. Nazari, G. Khalaj, Effects of Fe2O3 nanoparticles on water permeability and strength assessments of high strength self-compacting concrete. J. Mater. Sci. Technol. 28, 73–82 (2012)

    Article  Google Scholar 

  66. A. Nazari, R. Shadi, Effects of CuO nanoparticles on compressive strength of self-compacting concrete. Sadhana-Indian Academy Sci. 36, 371–391 (2011)

    Article  Google Scholar 

  67. A. Nazari, R. Shadi, Effects of CuO nanoparticles on microstructure, physical, mechanical and thermal properties of self-compacting cementitious composites. J. Mater. Sci. Technol. 27, 81–92 (2011)

    Article  Google Scholar 

  68. A. Nazari, M.H. Rafieipour, R. Shadi, The Effects of CuO Nanoparticles on properties of self compacting concrete with GGBFS as Binder. Mater. Res. 14, 307–316 (2011)

    Article  Google Scholar 

  69. A. Nazari, R. Shadi, R. Sharin, S.F. Shamekhi, A. Khademno, Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J. Am. Sci. 6, 6–9 (2010)

    Google Scholar 

  70. A. Nazari, R. Shadi, R. Sharin, S.F. Shamekhi, A. Khademno, Mechanical properties of cement mortar with Al2O3 nanoparticles. J. Am. Sci. 6, 94–97 (2010)

    Google Scholar 

  71. M.R. Arefi, M.R. Javeri, E. Mollaahmadi, To study the effect of adding Al2O3 nanoparticles on the mechanical properties and microstructure of cement mortar. Life Sci. J. 8, 613–617 (2011)

    Google Scholar 

  72. L. Zhenhua, W. Huafeng, H. Shan, L. Yang, W. Miao, Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 60, 356–359 (2006)

    Article  Google Scholar 

  73. A. Nazari, R. Shadi, ZrO2 nanoparticles effects on split tensile strength of self compacting concrete. Mater. Res. 13, 485–495 (2010)

    Article  Google Scholar 

  74. A. Nazari, R. Shadi, R. Shirin, F.S. Seyedeh, A. Khademno, An investigation on the strength and workability of cement based concrete performance by using ZrO2 nanoparticles. J. Am. Sci. 6, 29–33 (2010)

    Google Scholar 

  75. A. Nazari, R. Shadi, R. Shirin, F.S. Seyedeh, A. Khademno, Embedded ZrO2 nanoparticles mechanical properties monitoring in cementitious composites. J. Am. Sci. 6, 86–89 (2010)

    Google Scholar 

  76. A. Nazari, R. Shadi, The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete. Compos. Part B: Eng. 42, 167–175 (2011)

    Article  Google Scholar 

  77. A. Nazari, S. Riahi, The effects of ZnO2 nanoparticles on strength assessments and water permeability of concrete in different curing media. Mater. Res. 14, 178–188 (2011)

    Article  Google Scholar 

  78. T. Sato, J.J. Beaudoin, The Effect Of Nano-Sized CaCO 3 Addition on the Hydration of OPC Containing High Volumes of Fly Ash. Proceeding of the 12th International conference on the chemical of cement, Montreal, Canada, 1–12 (2006)

    Google Scholar 

  79. T. Sato, F. Diallo, Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. J. Transp. Res. Board. 2141, 61–67 (2010)

    Article  Google Scholar 

  80. S. Kawashima, P. Hou, D.J. Corr, S.P. Shah, Modification of cement-based materials with nanoparticles. Cem. Concr. Compos. 36, 8–15 (2013)

    Article  Google Scholar 

  81. F.U.A. Shaikh, S.W.M. Supit, Mechanical and durability properties of high volume fly ash concrete containing calcium carbonate nanoparticles. Constr. Build. Mater. 70, 309–321 (2014)

    Article  Google Scholar 

  82. A. Nazari, S. Riahi, Optimization mechanical properties of Cr2O3 nanoparticles binary blended cementitious composite. J. Compos. Mater. 45, 943–948 (2011)

    Article  Google Scholar 

  83. A. Nazari, S. Riahi, The effects of Cr2O3 nanoparticles on strength assessments and water permeability of concrete in different curing media. Mater. Sci. Eng. 528, 1173–1182 (2011)

    Article  Google Scholar 

  84. A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Silver nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236–241 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabih Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Daniyal, M., Azam, A., Akhtar, S. (2018). Application of Nanomaterials in Civil Engineering. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_6

Download citation

Publish with us

Policies and ethics