Skip to main content

Metal Nanoparticles as Glucose Sensor

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

Diabetes, a metabolic disorder, has become a major health problem in the world. According to WHO report, the number of patients is projected to 300 million in 2025. Therefore, the need of glucose detection is extremely important to the patients suffering from diabetes. Glucose oxidase (GOx) has been extensively used to construct amperometric biosensors for glucose detection owing to its high selectivity and sensitivity to glucose. However, GOx-based biosensors suffer from a stability problem due to the fundamental feature of enzymes. Therefore, it requires a need for enzyme-free glucose sensors. During last two decades, considerable attention has been paid to develop enzyme-free electrodes. Precious metals, metal alloys, and metal nanoparticles are extensively studied for advancement of non-enzymatic glucose sensors. Therefore, the need of a cost-effective, sensitive, and reliable enzyme-free glucose sensor is in great demand. In recent years, noble metal nanoparticles have found immense interest by researchers due to their potential in label-free forms of biological and chemical sensors. The high capability of these sensors is due to the novel properties of noble metal nanostructured arrays, for instance, high surface to volume ratio, localized surface plasmon resonance, excellent conductivity and anomalous transmission, and reflection of light. The amperometric technique is most widely used tool in the sensing of glucose. On the other side, some LSPR sensors are also reported which showed good sensitive to the changes in refractive index occurring at a metal/dielectric interface. Some researchers also studied fiber-optic-based glucose sensor which was based on the attenuated total reflection phenomenon. Enzymatic and non-enzymatic sensors of silver, gold, and copper nanoparticles are discussed in details in the chapter. The fabrication of glucose sensors has also been discussed with keeping in view the interest of the researchers. The objective of this chapter is to cover the bare and modified/composites of metal nanoparticles as glucose sensor. The most recent as well as conventional fabrication methods are discussed in detail. The linearity range and limit of detection of the glucose sensors are described in detail to justify the fabrication process. The chapter will provide in-depth review of metal nanoparticles-based glucose sensors which would be beneficial to all researchers, scientists, engineers, and students who are in direct contact of developing and using glucose sensors. It is hoped that the chapter will bridge the common gap between the research literature and standard textbooks. The material in this chapter emphasizes on developments of sensitive, rapid, and cheap systems for identification of glucose. The fabrication techniques of metal nanoparticles as glucose sensor are also studied in connection with different methodologies like SPR, SERS, electrochemical, and paper based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)

    Article  Google Scholar 

  2. P. D’Orazio, Biosensors in clinical chemistry. (2003)

    Google Scholar 

  3. J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective. (2005)

    Google Scholar 

  4. L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962)

    Article  Google Scholar 

  5. C. Deng, J. Chen, X. Chen, C. Xiao, L. Nie, S. Yao, Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron. 23, 1272–1277 (2008)

    Article  Google Scholar 

  6. R. Wilson, A.P.F. Turner, Glucose oxidase: an ideal enzyme. (1992)

    Google Scholar 

  7. S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U S A 97, 996–1001 (2000)

    Article  Google Scholar 

  8. J. Yguerabide, E.E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 262, 157–176 (1998)

    Article  Google Scholar 

  9. J.-M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003)

    Article  Google Scholar 

  10. Rahisuddin Akrema, Biomediated unmodified silver nanoparticles as a green probe for Cu2+ ion detection. Sens. Lettors. 13, 953–960 (2015)

    Article  Google Scholar 

  11. C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Towards advanced chemical and biological nanosensors—An overview. (2005)

    Google Scholar 

  12. A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)

    Article  Google Scholar 

  13. A.B. Dahlin, J.O. Tegenfeldt, F. Hǒǒk, Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 78, 4416–4423 (2006)

    Article  Google Scholar 

  14. A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)

    Article  Google Scholar 

  15. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003)

    Article  Google Scholar 

  16. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides properties of gold nanoparticles selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 80, 1078–1081 (2010)

    Google Scholar 

  17. J.A. Dieringer, A.D. McFarland, N.C. Shah, D.A. Stuart, A.V. Whitney, C.R. Yonzon, M.A. Young, X. Zhang, R.P. Van Duyne, Introductory lecture surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9–26 (2006)

    Article  Google Scholar 

  18. D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977)

    Article  Google Scholar 

  19. K.L. Haller, L.A. Bumm, R.I. Altkorn, E.J. Zeman, G.C. Schat, R.P. Van Duyne, Spatially resolved surface enhanced second harmonic generation: theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface. J. Chem. Phys. 90, 1237–1252 (1989)

    Article  Google Scholar 

  20. T.R. Jensen, R.P. Van Duyne, S.A. Johnson, V.A. Maroni, Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Appl. Spectrosc. 54, 371–377 (2000)

    Article  Google Scholar 

  21. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    Article  Google Scholar 

  22. K. Aslan, J.R. Lakowicz, H. Szmacinski, C.D. Geddes, Enhanced ratiometric pH sensing using SNAFL-2 on silver Island films: metal-enhanced fluorescence sensing. J. Fluoresc. 15, 37–40 (2005)

    Article  Google Scholar 

  23. Y. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007)

    Article  Google Scholar 

  24. A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006)

    Article  Google Scholar 

  25. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  Google Scholar 

  26. H.A. Atwater, The promise of plasmonics. Sci. Am. 296, 56–62 (2007)

    Article  Google Scholar 

  27. J. Wang, Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta. pp. 247–257 (2003)

    Google Scholar 

  28. E. Katz, I. Willner, J. Wang, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis. 16, 19–44 (2004)

    Article  Google Scholar 

  29. W. Ngeontae, W. Janrungroatsakul, P. Maneewattanapinyo, S. Ekgasit, W. Aeungmaitrepirom, T. Tuntulani, Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sens. Actuators, B Chem. 137, 320–326 (2009)

    Article  Google Scholar 

  30. K. Aslan, J. Zhang, J.R. Lakowicz, C.D. Geddes, Saccharide sensing using gold and silver nanoparticles—a review. J. Fluoresc. 14, 391–400 (2004)

    Article  Google Scholar 

  31. J. Lin, C. He, Y. Zhao, S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens. Actuators, B Chem. 137, 768–773 (2009)

    Article  Google Scholar 

  32. X. Ren, X. Meng, D. Chen, F. Tang, J. Jiao, Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 21, 433–437 (2005)

    Article  Google Scholar 

  33. T. Chung, S.Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011)

    Article  Google Scholar 

  34. X.Y. Zhang, A. Hu, T. Zhang, W. Lei, X.J. Xue, Y. Zhou, W.W. Duley, Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5, 9082–9092 (2011)

    Article  Google Scholar 

  35. J.J. Mock, D.R. Smith, S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3, 485–491 (2003)

    Article  Google Scholar 

  36. Y. Shao, S. Xu, X. Zheng, Y. Wang, W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors 10, 3585–3596 (2010)

    Article  Google Scholar 

  37. N. Cennamo, G. D’Agostino, A. Donà, G. Dacarro, P. Pallavicini, M. Pesavento, L. Zeni, Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors (Basel). 13, 14676–14686 (2013)

    Google Scholar 

  38. W. Ma, H. Yang, W. Wang, P. Gao, J. Yao, Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance. Sensors 11, 8643–8653 (2011)

    Article  Google Scholar 

  39. T. Zhang, Y. Song, X. Zhang, J. Wu, Synthesis of silver nanostructures by multistep methods. Sensors 14, 5860–5889 (2014)

    Article  Google Scholar 

  40. A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B. 108, 109–116 (2004)

    Article  Google Scholar 

  41. A. Serra, E. Filippo, M. Re, M. Palmisano, M. Vittori-Antisari, A. Buccolieri, D. Manno, Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology 20, 165501 (2009)

    Article  Google Scholar 

  42. Y. Xia, J. Ye, K. Tan, J. Wang, G. Yang, Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal. Chem. 85, 6241–6247 (2013)

    Article  Google Scholar 

  43. M. Ghiaci, M. Tghizadeh, A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection. J. Taiwan Inst. Chem. Eng. 63, 39–45 (2016)

    Article  Google Scholar 

  44. C. Apetrei, I.M. Apetrei, J.A. De Saja, M.L. Rodriguez-Mendez, Carbon paste electrodes made from different carbonaceous materials: application in the study of antioxidants. Sensors (Basel) 11, 1328–1344 (2011)

    Article  Google Scholar 

  45. A.A. Ensafi, M.M. Abarghoui, B. Rezaei, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochim. Acta 123, 219–226 (2014)

    Article  Google Scholar 

  46. T.G.S. Babu, T. Ramachandran, Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model. Electrochim. Acta 55, 1612–1618 (2010)

    Article  Google Scholar 

  47. D. Li, Y. Sun, S. Yu, C. Sun, H. Yu, K. Xu, A single-loop fiber attenuated total reflection sensor enhanced by silver nanoparticles for continuous glucose monitoring. Sens. Actuators, B Chem. 220, 1033–1042 (2015)

    Article  Google Scholar 

  48. S. Yu, D. Li, H. Chong, C. Sun, K. Xu, Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy. Opt. Lasers Eng. 55, 78–83 (2014)

    Article  Google Scholar 

  49. D. Li, S. Yu, C. Sun, C. Zou, H. Yu, K. Xu, U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring. Biosens. Bioelectron. 72, 370–375 (2015)

    Article  Google Scholar 

  50. A.C. Joshi, G.B. Markad, S.K. Haram, Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: their application for the amperometric detection of glucose in the human blood samples. Electrochim. Acta 161, 108–114 (2015)

    Article  Google Scholar 

  51. D. Feng, F. Wang, Z. Chen, Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens. Actuators, B Chem. 138, 539–544 (2009)

    Article  Google Scholar 

  52. T.D. Thanh, J. Balamurugan, S.H. Lee, N.H. Kim, J.H. Lee, Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron. 81, 259–267 (2016)

    Article  Google Scholar 

  53. B.K. Jena, C.R. Raj, Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem. A Eur. J. 12, 2702–2708 (2006)

    Article  Google Scholar 

  54. R.R. Adzic, M.W. Hsiao, E.B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces. J. Electroanal. Chem. Interfacial Electrochem. 260, 475–485 (1989)

    Article  Google Scholar 

  55. M.W. Hsiao, R.R. Adžić, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J. Electrochem. Soc. 143, 759–767 (1996)

    Article  Google Scholar 

  56. L.D. Burke, P.F. Nugent, The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media. Gold Bull. 31, 39–50 (1998)

    Article  Google Scholar 

  57. L.A. Larew, D.C. Johnson, Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J. Electroanal. Chem. 262, 167–182 (1989)

    Article  Google Scholar 

  58. L.D. Burke, Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states. Gold Bull. 37, 125–135 (2004)

    Article  Google Scholar 

  59. D. Cai, Y. Yu, Y. Lan, F.J. Dufort, G. Xiong, T. Paudel, Z. Ren, D.J. Wagner, T.C. Chiles, Glucose sensors made of novel carbon nanotube-gold nanoparticle composites. BioFactors 30, 271–277 (2007)

    Article  Google Scholar 

  60. Q. Chen, G.L. Kenausis, A. Heller, Stability of oxidases immobilized in silica gels. J. Am. Chem. Soc. 120, 4582–4585 (1998)

    Article  Google Scholar 

  61. H. Tang, J. Chen, S. Yao, L. Nie, G. Deng, Y. Kuang, Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal. Biochem. 331, 89–97 (2004)

    Article  Google Scholar 

  62. E.H. El-Ads, A. Galal, N.F. Atta, Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode—towards a novel non-enzymatic glucose sensor. J. Electroanal. Chem. 749, 42–52 (2015)

    Article  Google Scholar 

  63. S. Zhang, N. Wang, H. Yu, Y. Niu, C. Sun, Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67, 15–22 (2005)

    Article  Google Scholar 

  64. X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007)

    Article  Google Scholar 

  65. J. Yang, L.C. Jiang, W.D. Zhang, S. Gunasekaran, A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82, 25–33 (2010)

    Article  Google Scholar 

  66. J. Yang, W. De Zhang, S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens. Bioelectron. 26, 279–284 (2010)

    Article  Google Scholar 

  67. J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012)

    Article  Google Scholar 

  68. J. Wang, G. Chen, M. Wang, M. Chatrathi, Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst. 129, 512 (2004)

    Article  Google Scholar 

  69. L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature. Science (80-.). 287, 1463–1466 (2000)

    Google Scholar 

  70. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  71. T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, S. Hirono, Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method. Electrochem. Commun. 4, 468–471 (2002)

    Article  Google Scholar 

  72. S.T. Farrell, C.B. Breslin, Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim. Acta 49, 4497–4503 (2004)

    Article  Google Scholar 

  73. K.B. Male, S. Hrapovic, Y. Liu, D. Wang, J.H.T. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta 516, 35–41 (2004)

    Article  Google Scholar 

  74. J.Z. Xu, J.J. Zhu, H. Wang, H.Y. Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Anal. Lett. 36, 2723–2733 (2003)

    Article  Google Scholar 

  75. Q. Xu, Y. Zhao, J.Z. Xu, J.J. Zhu, Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators, B Chem. 114, 379–386 (2006)

    Article  Google Scholar 

  76. C.H. Pyun, In situ spectroelectrochemical studies on anodic oxidation of copper in alkaline solution. J. Electrochem. Soc. 133, 2024 (1986)

    Article  Google Scholar 

  77. S. Dong, T. Kuwana, Cobalt-porphyrin-Nafion film on carbon microarray electrode to monitor oxygen for enzyme analysis for glucose. Electroanalysis 3, 485–491 (1991)

    Article  Google Scholar 

  78. Y. Xie, C.O. Huber, Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal. Chem. 63, 1714–1719 (1991)

    Article  Google Scholar 

  79. L. Jiang, R. Wang, X. Li, L. Jiang, G. Lu, Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun. 7, 597–601 (2005)

    Article  Google Scholar 

  80. S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76, 1083–1088 (2004)

    Article  Google Scholar 

  81. Y.C. Tsai, S.C. Li, J.M. Chen, Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 21, 3653–3658 (2005)

    Article  Google Scholar 

  82. M. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045–5050 (2004)

    Article  Google Scholar 

  83. Y. Wang, W. Wei, J. Zeng, X. Liu, X. Zeng, Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim. Acta 160, 253–260 (2008)

    Article  Google Scholar 

  84. N. Hui, W. Wang, G. Xu, X. Luo, Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. J. Mater. Chem. B. 3, 556–561 (2015)

    Article  Google Scholar 

  85. M. Xu, X. Luo, J.J. Davis, The label free picomolar detection of insulin in blood serum. Biosens. Bioelectron. 39, 21–25 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahisuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Akrema, Rahisuddin (2018). Metal Nanoparticles as Glucose Sensor. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_5

Download citation

Publish with us

Policies and ethics