Skip to main content

Recent Trends in the Processing and Applications of Carbon Nanotubes and C-MEMS-Based Carbon Nanowires

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

In this chapter, we review the processing of carbon nanotubes from the first reported work to the present and cover a myriad of CNT applications. For CNT processing, the three most used techniques, i.e., arc discharge, laser ablation, and chemical vapor deposition for both multiwall and single-wall CNTs are detailed. We will learn that these fabrication techniques often need to be adapted to serve a specific application. We analyze processing techniques for CNT application in gas sensors, biosensors, optical sensors, supercapacitors, micro-/nanoelectronics, and in nanoelectromechanical systems. Since the poor adhesion between CNTs and substrates often limits their application, we also survey the work of researchers who developed surface modification techniques. Although CNT research is quite a mature field, it still faces major challenges, including making ohmic contacts, selecting for a precise tube diameter and a precise tube length as well as problems with nanotube positioning accuracy. This explains why the large-scale manufacture of CNT devices remains a daunting task. Due to these limitations in the use of CNTs in a manufacturing environment, we propose an alternative, i.e., C-MEMS or carbon-MEMS. A common C-MEMS fabrication process starts with photolithography of a high-carbon content photosensitive polymer precursor and it is followed by carbonization, also called pyrolysis, of the patterned polymer. Carbon nanowires (CNWs), fabricated by electrospinning of suspended polymer nanowires and photolithography of the contact pads for the suspended wires to attach too and the subsequent pyrolysis of this hybrid construct, have the potential of alleviating some of the aforementioned problems with CNTs. We review the C-MEMS fabrication process of CNWs in detail, compare their properties with CNTs, and discuss their various applications in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 314, 56–58 (1991)

    Article  Google Scholar 

  2. H.H. Kim, H.J. Kim, in The Preparation of Carbon Nanotubes by DC arc Discharge Process Using Xylene-Ferrocene as a Floating Catalyst Precursor. NMP47, Nanotechnology Materials and Devices Conference, IEEE, (2006), pp. 496–497

    Google Scholar 

  3. Y. Sato, K. Motomiya, B. Jeyadevan, K. Tohji, G. Sato, H. Ishida, T. Hirata, R. Hatakeyama, Effect of cerium ions in an arc peripheral plasma on the growth of radial single-walled carbon nanotubes. J. Appl. Phys. 98, 094313 (2005)

    Article  Google Scholar 

  4. M. Kanai, A. Koshio, H. Shinohara, T. Mieno, A. Kasuya, Y. Ando, X. Zhao, High-yield synthesis of single-walled carbon nanotubes by gravity-free arc discharge. Appl. Phys. Lett. 79, 2967 (2001)

    Article  Google Scholar 

  5. M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A.M. Waas, K.K. Ostrikov, Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J. Appl. Phys. 103, 094318 (2008)

    Article  Google Scholar 

  6. T. Sugai, H. Omote, S. Bandow, N. Tanaka, H. Shinohara, Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge. J. Chem. Phys. 112, 6000 (2000)

    Article  Google Scholar 

  7. Y. Ando, X. Zhao, K. Hirahara, S. Iijima, Production of thick single-walled carbon nanotubes by arc discharge in hydrogen ambience. AIP Conf. Proc. 590, 7 (2001)

    Article  Google Scholar 

  8. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)

    Article  Google Scholar 

  9. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)

    Article  Google Scholar 

  10. J. Chae, X. Ho, J.A. Rogers, K. Jain, Patterning of single walled carbon nanotubes using a low-fluence excimer laser photoablation process. Appl. Phys. Lett. 92, 173115 (2008)

    Article  Google Scholar 

  11. J. Chae, K. Jain, Patterning of carbon nanotubes by material assisted laser ablation process. IEEE Trans. Nanotechnol. 9(3), 381–385 (2010)

    Article  Google Scholar 

  12. T. Wang, J. Shang, J. Liu, in Preparation of VACNT TIM by a Novel Metallization and Chemical Bonding Process. 13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP) (2012), pp. 1646–1649

    Google Scholar 

  13. B.T. Nguyen, X.T. Than, V.C. Nguyen, T. Thanh, T. Ngo, H.T. Bui, X.N. Nguyen, H.K. Phan, N.M. Phan, Fabrication of horizontally aligned ultra-long single-walled carbon nanotubes on Si substrates using the fast-heating chemical vapour deposition method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 025010 (2012)

    Google Scholar 

  14. Y. Matsuoka, I.T. Clark, M. Yoshimura, Growth mechanism of multilayer-graphene-capped, vertically aligned multiwalled carbon nanotube arrays. J. Vac. Sci. Technol. B 29(6), 061801 (2011)

    Article  Google Scholar 

  15. M.A. Nguyen, D.T. Ngo, V.T. Le, D.V. Cao, Synthesis of single-walled carbon nanotubes over Co–Mo/Al2O3 catalyst by the catalytic chemical vapour deposition of methane. Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035018 (2013)

    Google Scholar 

  16. S. Ramakrishnan, E.J. Jelmy, A. Baladandapani, M. Rangarajan, N.K. Kothurkar, Synthesis of multiwalled carbon nanotubes using RF-CCVD and a bimetallic catalyst. AIP Conf. Proc. 1447, 275–276 (2012)

    Article  Google Scholar 

  17. J. Lee, S. Choi, in Fabrication of Carbon Nanotubes by Anodic Aluminum Oxide Nano-template. NMP12, Nanotechnology Materials and Devices Conference, IEEE (2006), pp. 426–427

    Google Scholar 

  18. J. Wu, M. Eastman, T. Gutu, M. Wyse, J. Jiao, S.-M. Kim, M. Mann, Y. Zhang, K.B.K. Teo, Fabrication of carbon nanotube-based nanodevices using a combination technique of focused ion beam and plasma-enhanced chemical vapour deposition. Appl. Phys. Lett. 91, 173122 (2007)

    Article  Google Scholar 

  19. W.K. Wong, C.S. Lee, S.T. Lee, Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical-vapour deposition. J. Appl. Phys. 97, 084307 (2005)

    Article  Google Scholar 

  20. G.I. Shim, Y. Kojima, S. Kono, Y. Ohno, T. Ishijima, Fabrication of carbon nanotubes by slot-excited microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 47, 5652–5655 (2008)

    Article  Google Scholar 

  21. K.S. Kim, G. Cota-Sanchez, C.T. Kingston, M. Imris, B. Simard, G. Soucy, Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D Appl. Phys. 40, 2375–2387 (2007)

    Article  Google Scholar 

  22. J.-T Huang, C.-H Lin, P.-C Chang, in Low-temperature Fabrication Method of Carbon Nanotubes-Based Gas Sensor. International Conference on Electronic Materials and Packaging (2008), pp. 57–60

    Google Scholar 

  23. S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)

    Article  Google Scholar 

  24. J.-H. Yun, H. Chang-Soo, J. Kim, J.-W. Song, D.-H. Shin, Y.-G. Park, in Fabrication of Carbon Nanotube Sensor Device by Inkjet Printing. Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (2008), pp. 506–509

    Google Scholar 

  25. M. Baghgar, Y. Abdi, E. Arzi, Fabrication of low-pressure field ionization gas sensor using bent carbon nanotubes. J. Phys. D Appl. Phys. 42, 135502 (2009)

    Article  Google Scholar 

  26. J. Huang, J. Wang, C. Gu, K. Yu, F. Meng, J. Liu, A novel highly sensitive gas ionization sensor for ammonia detection. Sens. Actuators A 150, 218–223 (2009)

    Article  Google Scholar 

  27. D. Janagama, P. Goud, R. Markondeya, M. Iyer, T. Rao, in Biofunctionalization of Multi-walled Carbon Nanotubes (MWNTs) for the Fabrication of Protein Nano Biosensors. 11th National symposium on Advanced Packaging Materials: Processes, Properties and Interface (2006), pp. 119–121

    Google Scholar 

  28. C.K.M. Fung, N. Xi, B. Shanker, K.W.C. Lai, J. Zhang, H. Chen, Y. Luo, in Design and Fabrication of Nano Antenna for Carbon Nanotube Infrared Detector. 8th IEEE Conference on Nanotechnology (2008), pp. 205–208

    Google Scholar 

  29. R. Sharma, A. AI-Hamry, S. Vijayragavan, A. Benchirouf, A. Sanli, C. Miiller, O. Kanoun, in Single-Wall Carbon Nanotubes Based Near-Infrared Sensors on Flexible Substrate. 11th International Multi-Conference on Systems, Signals and Devices (2014), pp. 1–5

    Google Scholar 

  30. H. Oh, J.-J. Kim, W. Song, S. Moon, N. Kim, J. Kim, N. Park, Fabrication of n-type carbon nanotube field-effect transistors by Al doping. Appl. Phys. Lett. 88, 103503 (2006)

    Article  Google Scholar 

  31. R. Nouchi, H. Tomita, A. Ogura, H. Kataura, M. Shiraishi, Logic circuits using solution-processed single-walled carbon nanotube transistors. Appl. Phys. Lett. 92, 253507 (2008)

    Article  Google Scholar 

  32. N. Imazu, T. Fujigaya, N. Nakashima, Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Sci. Technol. Adv. Mater. 15, 025005 (2014)

    Article  Google Scholar 

  33. L. Zhu, K. Moon, B. Bertram, D.W. Hess, C.P. Wong, in Assembling Carbon Nanotube Bundles Using Transfer Process for Fine-Pitch Electrical Interconnect Applications. Electronic Components and Technology Conference (2007)

    Google Scholar 

  34. J.-T. Huang, P.-C. Chang, H.-W. Chao, P.-L. Hsu, in A Low-Temperature Fabrication Process Integrated Carbon Nanotubes-Based Sensor Device into CMOS IC. IEEE NANO (2009)

    Google Scholar 

  35. K.E. Aasmundtveit, B.Q. Ta, L. Lin, E. Halvorsen, N. Hoivik, Direct integration of carbon nanotubes in Si microstructures. J. Micromech. Microeng. 22, 074006 (2012)

    Article  Google Scholar 

  36. Y. Jiang, A. Kozinda, T. Chang, L. Lin, Flexible energy storage devices based on carbon nanotube forests with built-in metal electrodes. Sens. Actuators A 195, 224–230 (2013)

    Article  Google Scholar 

  37. C.-F. Hu, J.-Y. Wang, Y.-C. Liu, M.-H. Tsai, W. Fang, Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application. Nanotechnology 24, 444006 (2013)

    Article  Google Scholar 

  38. C. Stampfer, A. Jungen, C. Hierold, Fabrication of discrete carbon nanotube based nano-scaled force sensors (Sensors, IEEE, 2004), pp. 1056–1059

    Google Scholar 

  39. R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, D.H. Wu, Study of electrochemical capacitors utilizing carbon nanotube electrodes. J. Power Sour. 84, 126–129 (1999)

    Article  Google Scholar 

  40. T.K. Sasaki, A. Ikegami, M. Mochizuki, N. Aoki, Y. Ochiai, in Fabrication of Carbon Nanotube Electrodes for Bio-Nano-Electronic Devices. IPAP Conference Series 6 (2005), pp. 168–170

    Google Scholar 

  41. A. Inaba, Y. Takei, T. Kan, K. Matsumoto, I. Shimoyama, Nanoprobe Electrodes Cut by Physical Stretch of Parylene-insulated Carbon Nanotube Bridges, Transducers’11 (Beijing, China, 2011)

    Google Scholar 

  42. L. Yang, X. Li, Y. Xiong, X. Liu, X. Li, M. Wang, S. Yan, L.A.M. Alshahrani, P. Liu, C. Zhang, The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. J. Electroanal. Chem. 731, 14–19 (2014)

    Article  Google Scholar 

  43. E.C. Walter, K. Ng, M.P. Zach, R.M. Penner, F. Favier, Electronic devices from electrodeposited metal nanowires. Microelectron. Eng. 61–62, 555–561 (2002)

    Article  Google Scholar 

  44. Y. Chai, Y. Wu, K. Takei, H.Y. Chen, S. Yu, P.C.H. Chan, A. Javey, H.S.P. Wong, In 2010 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, CA, 2010), pp. 214–217

    Google Scholar 

  45. J. Huang, Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12), 9903–9924 (2009)

    Article  Google Scholar 

  46. S. Bibekananda, V.J. Babu, V. Subramanian, T.S.J. Natarajan, Preparation and characterization of electrospun fibers of poly(methyl methacrylate)-single walled carbon nanotube nanocomposites. J. Eng. Fibers Fabr. 3(4), 39–45 (2008)

    Google Scholar 

  47. O.J. Schueller, S.T. Brittain, G.M. Whitesides, Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9(6), 477–480 (1997)

    Google Scholar 

  48. A. Singh, J. Jayaram, M. Madou, S. Akbar, Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149(3), E78–E83 (2002)

    Article  Google Scholar 

  49. B.Y. Park, R. Zaouk, C. Wang, M.J. Madou, A case for fractal electrodes in electrochemical applications. J. Electrochem. Soc. 154(2), 1–5 (2007)

    Article  Google Scholar 

  50. J.-I. Heo, Y. Lim, M. Madou, H. Shin, in Scalable Suspended Carbon Nanowire Meshes as Ultrasensitive Electrochemical Sensing Platforms. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (2012), pp. 878–881

    Google Scholar 

  51. G. Canton, in Development of Electro-Mechanical Spinning for Controlled Deposition of Carbon Nanofibers. PhD Thesis, UCI (2014)

    Google Scholar 

  52. A. Greiner, J.H. Wendor, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)

    Article  Google Scholar 

  53. P. Gibson, H. Schreuder-Gibson, D. Rivin, Electrospun fiber mats: transport properties. AIChE J. 45(1), 190–195 (1999)

    Article  Google Scholar 

  54. H.-J. Jin, S.V. Fridrikh, G.C. Rutledge, D.L. Kaplan, Electrospinning bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6), 1233–1239 (2002)

    Article  Google Scholar 

  55. Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)

    Article  Google Scholar 

  56. R. Murugan, S. Ramakrishna, Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 12(3), 435–447 (2006)

    Article  Google Scholar 

  57. S. Agarwal, J.H. Wendor, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)

    Article  Google Scholar 

  58. A. Babel, D. Li, Y. Xia, S.A. Jenekhe, Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38(11), 4705–4711 (2005)

    Article  Google Scholar 

  59. N. Pinto, A. Johnson, A. MacDiarmid, C. Mueller, N. Theofylaktos, D. Robinson, F. Miranda, Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett. 83(20), 4244–4246 (2003)

    Article  Google Scholar 

  60. S. Sharma, M. Madou, A new approach to gas sensing with nanotechnology. Philos. Trans. R. Society A: Math. Phys. Eng. Sci. 370(1967), 2448–2473 (2012)

    Article  Google Scholar 

  61. H. Liu, J. Kameoka, D.A. Czaplewski, H. Craighead, Polymeric nanowire chemical sensor. Nano Lett. 4(4), 671–675 (2004)

    Article  Google Scholar 

  62. A.L. Andrady, Science and technology of polymer nanofibers (John Wiley & Sons, New York, NY, 2008)

    Book  Google Scholar 

  63. M. Madou, V.H. Perez-Gonzalez, B. Pramanick, Carbon: The Next Silicon? Book 1—Fundamentals (Momentum Press, New York, 2016)

    Google Scholar 

  64. J.-S. Kim, D.H. Reneker, Polybenzimidazole nanofiber produced by electrospinning. Polym. Eng. Sci. 39(5), 849–854 (1999)

    Article  Google Scholar 

  65. D. Sun, C. Chang, S. Li, L. Lin, Near-field electrospinning. Nano Lett. 6(4), 839–842 (2006)

    Article  Google Scholar 

  66. G. Zheng, G.W. Li, X. Wang, D. Wu, D. Sun, L. Lin, Precision deposition of a nanofibre by near-field electrospinning. J. Phys. D: Appl. Phys. 43(41), 415501 (2010)

    Google Scholar 

  67. C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 93(12), 123111 (2008)

    Article  Google Scholar 

  68. C.S. Sharma, H. Katepalli, A. Sharma, M. Madou, Fabrication and electrical conductivity of suspended carbon nanofiber arrays. Carbon 49(5), 173–1727 (2011)

    Article  Google Scholar 

  69. J.-I. Heo, Y. Lim, M. Madou, H. Shin, in Scalable Suspended Carbon Nanowire Meshes as Ultrasensitive Electrochemical Sensing Platforms. In IEEE 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) (2012), pp. 878–81

    Google Scholar 

  70. Y. Lim, J. Heo, M.J. Madou, H. Shin, Development of Suspended 2D Carbon Nanostructures: Nanowires to Nanomeshes. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2013) (2013)

    Google Scholar 

  71. J. Heo, Y. Lim, H. Shin, in A Stacked Electrode Set Including Suspended Carbon Nanomeshes and Planar Carbon Pads for Electrochemical/Bio Sensor Applications. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2013) (2013)

    Google Scholar 

  72. S. Sharma, in Microstructural Tuning of Glassy Carbon for Electrical and Electrochemical Sensor Applications. PhD Thesis, UCI (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidhan Pramanick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pramanick, B., Meyn, M.M., Shrivastava, K., Martinez-Chapa, S.O., Madou, M.J. (2018). Recent Trends in the Processing and Applications of Carbon Nanotubes and C-MEMS-Based Carbon Nanowires. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_4

Download citation

Publish with us

Policies and ethics