Skip to main content

Carbon Nanowalls: A Potential 2-Dimensional Material for Field Emission and Energy-Related Applications

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

Carbon, an abundant material in the earth crust, is also the most attracting, in particular, owing to variety of fascinating materials it forms. It can appear as a transparent crystal (such as diamond), but also as black amorphous soot. It is associated with a rich and diverse chemistry. Carbon materials, in general, can be classified into different dimensional categories such as three-dimensional (3-D), two-dimensional (2-D), one-dimensional (1-D), and zero-dimensional (0-D) depending on the relative sizes in different spatial directions. Fullerenes are 0-D whereas carbon nanotubes (CNTs), nanofibres, or nanorods are 1-D nanostructures. Graphite nanosheets or nanowalls are considered as 2-D structures. A great attention has been given to the 0-D and 1-D carbon nanostructures, but studies on the growth and the properties of 2-D carbon nanowalls (CNWs) are not so abundant as in the case of fullerene or CNTs. The CNWs are very promising class of 2-D nanomaterials since the CNWs are characterized by an open boundary structure. On the other hand, fullerene and CNTs are closed boundary structures. Each CNW is made of several graphene sheets stacked over each other. The CNWs have a large surface area, which makes them very attractive for various potential applications such as chemical and biosensors or energy storage devices. Moreover, the CNWs have sharp edges normal to the substrate which make them very useful for field emission applications. In this chapter, growth of CNWs by various methods is discussed with an emphasis on plasma-enhanced chemical vapor deposition (PECVD) method. This is followed by the morphological and structural characterization of the CNWs by different techniques. The formation mechanism of CNWs will be described. In addition, properties of CNWs in respect to their potential applications in field emission and energy related devices including lithium ion batteries, fuel cells and solar cells, is also reviewed in the light of their unique morphology and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene. Nature 318, 162 (1985)

    Article  Google Scholar 

  2. W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon. Nature 347, 354 (1990)

    Article  Google Scholar 

  3. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  Google Scholar 

  4. Y. Ando, X. Zhao, T. Sugai, M. Kumar, Growing carbon nanotubes. Mater. Today p. 22 (2004)

    Google Scholar 

  5. M. Inagaki, New carbons-Control Of Structure and Functions, 2nd edn. (Elsevier, Netherlands, 2000)

    Google Scholar 

  6. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227 (2002)

    Article  Google Scholar 

  7. P.J.F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century (Cambridge University Press, UK, 1999)

    Book  Google Scholar 

  8. R. Bacon, Growth, structure, and properties of graphite whiskers. J. Appl. Phys. 31, 283 (1960)

    Article  Google Scholar 

  9. D.E.H. Jones, New Scientist 32, 245 (1966)

    Google Scholar 

  10. E. Osawa, Kagaku 25, 854 (1970). (in Japanese)

    Google Scholar 

  11. D.A. Bochvar, E.G. Galperin, Huckel (4N + 2) rule and some poly-condensed systems. Dokl. Acad. Sci. SSSR 209, 610 (1973)

    Google Scholar 

  12. S. Iijima, High resolution electron microscopy of some carbonaceous materials. J. Microsc 119, 99 (1980)

    Article  Google Scholar 

  13. E.A. Rohlfling, D.M. Cox, A. Kaldor, Production and characterization of supersonic carbon clusters. J. Chem. Phys. 81, 3322 (1984)

    Article  Google Scholar 

  14. D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707 (1992)

    Article  Google Scholar 

  15. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992)

    Article  Google Scholar 

  16. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)

    Article  Google Scholar 

  17. D.S. Bethune, C.H. Kiang, M.S. DeVries, G. Goman, R. Savoy, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 365, 605 (1993)

    Article  Google Scholar 

  18. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996)

    Article  Google Scholar 

  19. Z.F. Ren, Z.P. Huang, J.W. Wang, P. Bush, M.P. Seigal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 (1998)

    Article  Google Scholar 

  20. J. Kong, H.T. Soh, A.M. Cassel, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998)

    Article  Google Scholar 

  21. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195 (1998)

    Article  Google Scholar 

  22. R.R. Schilttler, J.W. Seo, J.K. Gimzewski, C. Durkan, M.S.M. Saifullah, M.E. Welland, Single crystals of single-walled carbon nanotubes formed by self-assembly. Science 292, 1136 (2001)

    Article  Google Scholar 

  23. Y. Wu, P. Quia, T. Chong, Z. Shen, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 64 (2002)

    Article  Google Scholar 

  24. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  Google Scholar 

  25. J. Han, in Carbon Nanotubes Science and Applications, ed. by M. Meyyappan (CRC Press, Boca Raton, 2005), p. 1

    Google Scholar 

  26. K.B.K. Teo, C. Singh, M. Chhowalla, W.I. Milne, in Encyclopedia of Nanoscience and Nanotechnology ed by H.S. Nalwa, vol. 1 (American Scientific Publishers, 2004), p. 665

    Google Scholar 

  27. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  28. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206 (2008)

    Article  Google Scholar 

  29. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer grapheme. Nano Lett. 8, 902 (2008)

    Article  Google Scholar 

  30. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)

    Article  Google Scholar 

  31. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008)

    Article  Google Scholar 

  32. Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, Y. Feng, Carbon nanowalls and related materials. J. Mater. Chem. 14, 469 (2004)

    Article  Google Scholar 

  33. Y. Ando, S. Iijima, Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys. 32, L107 (1993)

    Article  Google Scholar 

  34. S. Iijima, T. Wakabayashi, Y. Achiba, Structures of carbon soot prepared by laser ablation. J. Phys. Chem. 100, 5839 (1996)

    Article  Google Scholar 

  35. Y. Ando, X. Zhao, M. Ohkohchi, Production of petal-like graphite sheets by hydrogen arc discharge. Carbon 35, 153 (1997)

    Article  Google Scholar 

  36. N.G. Shang, F.C.K. Au, X.M. Meng, C.S. Lee, I. Bello, S.T. Lee, Uniform carbon nanoflake films and their field emissions. Chem. Phys. Lett. 358, 187 (2002)

    Article  Google Scholar 

  37. S.K. Srivastava, A.K. Shukla, V.D. Vankar, Vikram Kumar, Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films 492, 124 (2005)

    Article  Google Scholar 

  38. K. Tanaka, M. Yoshimura, A. Okamoto, K. Ueda, Growth of carbon nanowalls on a SiO2 substrate by microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 44, 2074 (2005)

    Article  Google Scholar 

  39. J. Wang, T. Ito, CVD growth and field emission characteristics of nano-structured films composed of vertically standing and mutually intersecting nano-carbon sheets. Diamond Relat. Mater. 16, 589 (2007)

    Article  Google Scholar 

  40. A.T.H. Chuang, B.O. Boskovic, J. Robertson, Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond Relat. Mater. 15, 1103 (2006)

    Article  Google Scholar 

  41. A.T.H. Chuang, J. Robertson, B.O. Boskovic, K.K.K. Koziol, Three-dimensional carbon nanowall structures. Appl. Phys. Lett. 90, 123107 (2007)

    Article  Google Scholar 

  42. M. Hiramatsu, K. Shiji, H. Amano, M. Hori, Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004)

    Article  Google Scholar 

  43. K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, M. Hori, Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition. Diamond and Relat. Mater. 14, 831 (2005)

    Article  Google Scholar 

  44. M. Hiramatsu, M. Hori, Fabrication of carbon nanowalls using novel plasma processing. Jpn. J. Appl. Phys. 45, 5522 (2006)

    Article  Google Scholar 

  45. S. Kondo, M. Hori, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. J. Vacuum Sci. Techno. B 26, 1294 (2008)

    Article  Google Scholar 

  46. T. Mori, M. Hiramatsu, K. Yamakawa, K. Takeda, M. Hori, Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition. Diamond Relat. Mater. 17, 1513 (2008)

    Article  Google Scholar 

  47. J. Wang, M. Zhu, R.A. Outlaw, X. Zhao, D.M. Manos, B.C. Holloway, Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42, 2867 (2004)

    Article  Google Scholar 

  48. M. Zhu, J. Wang, R.A. Outlaw, K. Hou, D.M. Manos, B.C. Holloway, Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diamond Relat. Mater. 16, 196 (2007)

    Article  Google Scholar 

  49. J.J. Wang, M.Y. Zhu, R.A. Outlaw, X. Zhao, D.M. Manos, B.C. Holloway, V.P. Mammana, Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265 (2004)

    Article  Google Scholar 

  50. G. Sato, T. Morio, T. Kato, R. Hatakeyama, Fast growth of carbon nanowalls from pure methane using helicon plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 45, 5210 (2006)

    Article  Google Scholar 

  51. H.G. Jain, H. Karacuban, D. Krix, H.W. Becker, H. Nienhaus, V. Buck, Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor. Carbon 49, 4987 (2011)

    Article  Google Scholar 

  52. A. Yoshimura, S. Kurita, M. Tachibana, K. Kojima, P.M. Morales, H. Nakai, Fabrication of carbon nanowalls by dc plasma-enhanced chemical vapor deposition and characterization of their structures, Proceedings of 2005 5th IEEE Conference on Nanotechnology Nagoya, Japan (2005)

    Google Scholar 

  53. S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, H. Nakai, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 97, 104320 (2005)

    Article  Google Scholar 

  54. K. Kobayashi, M. Tanimura, H. Nakai, Nanographite domains in carbon nanowalls. J. Appl. Phys. 101, 094306 (2007)

    Article  Google Scholar 

  55. O. Tanaike, N. Kitada, H. Yoshimura, H. Hatori, K. Kojima, M. Tachibana, Lithium insertion behavior of carbon nanowalls by dc plasma CVD and its heat-treatment effect. Solid State Ionics 180, 381 (2009)

    Article  Google Scholar 

  56. Z. Bo, K. Yu, G. Lu, P. Wang, S. Maoa, J. Chen, Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon 49, 1849 (2011)

    Article  Google Scholar 

  57. H. Yoshimura, S. Yamada, A. Yoshimura, I. Hirosawa, K. Kojima, M. Tachibana, Grazing incidence X-ray diffraction study on carbon nanowalls. Chem. Phys. Lett. 482, 125 (2009)

    Article  Google Scholar 

  58. T. Itoh, S. Shimabukuro, S. Kawamura, S. Nonomura, Preparation and electron field emission of carbon nanowall by Cat-CVD. Thin Solid Films 501, 314 (2006)

    Article  Google Scholar 

  59. N. Lisi, R. Giorgi, M. Re, Carbon nanowall growth on carbon paper by hot filament chemical vapour deposition and its microstructure. Carbon 49, 2134 (2011)

    Article  Google Scholar 

  60. R.J. Nemanich, S.A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392 (1979)

    Article  Google Scholar 

  61. J. Yu, Q. Zhang, J. Ahn, S.F. Yoon, Y.J. Rusli, B. Li, K. Gan, K.H.Tan Chew, Synthesis of carbon nanostructures by microwave plasma chemical vapor deposition and their characterization. Mater. Sci. Eng. B 90, 16 (2002)

    Article  Google Scholar 

  62. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970)

    Google Scholar 

  63. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000)

    Google Scholar 

  64. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B 64, 075414 (2001)

    Google Scholar 

  65. H. Wang, Y. Wu, C.K.S. Choong, J. Zhang, K.L. Teo, Z. Ni, Z. Shen, Disorder induced bands in first order Raman spectra of carbon nanowalls, Nanotechnology, 2006. IEEE-NANO 2006. Sixth IEEE Conference, vol. 1, pp. 219–222

    Google Scholar 

  66. Z.H. Ni, H.M. Fan, X.F. Fan, H.M. Wang, Z. Zheng, Y.P. Feng, Y.H. Wu, Z.X. Shen, High temperature Raman spectroscopy studies of carbon nanowalls. J. Raman Spectrosc. 38, 1449 (2007)

    Article  Google Scholar 

  67. Y. Wu, B. Yang, Effects of localized electric field on the growth of carbon nanowalls Nano Lett. 2, 355 (2002)

    Google Scholar 

  68. B. Chapman, Glow Discharge Process (Wiley, New York, 1980)

    Google Scholar 

  69. C. Bower, W. Zhu, S. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77, 830 (2000)

    Article  Google Scholar 

  70. M. Zhu, J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, D.M. Manos, A mechanism for carbon nanosheet formation. Carbon 45, 2229 (2007)

    Article  Google Scholar 

  71. I. Levchenko, K. Ostrikov, A.E. Rider, E. Tam, S.V. Vladimirov, S. Xu, Growth kinetics of carbon nanowall-like structures in low-temperature plasmas. Phys. Plasmas 14, 063502 (2007)

    Article  Google Scholar 

  72. R.H. Fowler, L.W. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. London A 119, 173 (1928)

    Article  Google Scholar 

  73. Y. Cheng, O. Zhou, Electron field emission from carbon nanotubes. C.R. Physique 4, 1021 (2003)

    Google Scholar 

  74. Z.P. Huang, Y. Tu, D.L. Carnahan, Z.F. Ren, in Encyclopedia of Nanoscience and Nanotechnology ed. by H.S. Nalwa, vol. 3 (American Scientific Publishers, 2004), p. 401

    Google Scholar 

  75. P. Gröning, L. Nilsson, P. Ruffieux, R. Clergereaux, O. Gröning, in Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa, vol. 1 (American Scientific Publishers, 2004), p. 547

    Google Scholar 

  76. W. Zhu, C. Bower, G.P. Kochanski, S. Jin, Electron field emission from nanostructured diamond and carbon nanotubes. Solid-State Electron 45, 921 (2001)

    Article  Google Scholar 

  77. C.A. Spindt, A thin-film field-emission cathode. J. Appl. Phys. 39, 3504 (1968)

    Article  Google Scholar 

  78. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550 (1995)

    Article  Google Scholar 

  79. W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179 (1995)

    Article  Google Scholar 

  80. P.G. Collins, A. Zettl, A simple and robust electron beam source from carbon nanotubes. Appl. Phys. Lett. 69, 1969 (1996)

    Article  Google Scholar 

  81. P.G. Collins, A. Zettl, Unique characteristics of cold cathode carbon-nanotube-matrix field emitters. Phys. Rev. B 55, 9391 (1997)

    Article  Google Scholar 

  82. Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, Y. Nishina, Conical beams from open nanotubes. Nature 389, 554 (1997)

    Article  Google Scholar 

  83. Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308 (1997)

    Article  Google Scholar 

  84. J.M. Bonard, F. Maier, T. Stoeckli, A. Chatelain, W.A. de Heer, J.P. Salvetat, L. Forro, Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 73, 7 (1998)

    Article  Google Scholar 

  85. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512 (1999)

    Article  Google Scholar 

  86. O.M. Kuttel, O. Groening, C. Emmenegger, L. Schlapbach, Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl. Phys. Lett. 73, 2113 (1998)

    Article  Google Scholar 

  87. Y. Saito, S. Uemura, Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169 (2000)

    Article  Google Scholar 

  88. M. Chhowalla, C. Ducati, N.L. Rupesinghe, K.B.K. Teo, G.A.J. Amaratunga, Field emission from short and stubby vertically aligned carbon nanotubes. Appl. Phys. Lett. 79, 2079 (2001)

    Article  Google Scholar 

  89. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, D.G. Hasko, Field emission from dense, sparse, and patterned arrays of carbon nanofibers. Appl. Phys. Lett. 80, 2011 (2002)

    Article  Google Scholar 

  90. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82, 3520 (2003)

    Article  Google Scholar 

  91. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84, 413 (2004)

    Article  Google Scholar 

  92. S.K. Srivastava, V.D. Vankar, D.V. Sridhar Rao, V. Kumar, Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films 515, 1851 (2006)

    Article  Google Scholar 

  93. S.K. Srivastava, V.D. Vankar, V. Kumar, Excellent field emission properties of short conical carbon nanotubes prepared by microwave plasma enhanced CVD process. Nanoscale Res. Lett. 3, 25 (2008)

    Google Scholar 

  94. S.K. Srivastava, V.D. Vankar, V. Kumar, Effect of catalyst film thickness on the growth, microstructure and field emission characteristics of carbon nanotubes. In Physics of Semiconductor Devices, 2007. IWPSD 2007. International Workshop on, Physics of Semiconductor Devices, 2007. IWPSD 2007. International Workshop on, pp. 836–839, IEEE

    Google Scholar 

  95. S. Chhoker, S.K. Srivastava, V.D. Vankar, Field emission properties of carbon nanostructures: a review, physics of semiconductor devices, 2007. IWPSD 2007. International Workshop on, Physics of Semiconductor Devices, 2007. IWPSD 2007. International Workshop on, pp. 820–826, IEEE

    Google Scholar 

  96. S.K. Srivastava, V.D. Vankar, V. Kumar, V.N. Singh, Effect of substrate morphology on growth and field emission properties of carbon nanotube films. Nanoscale Res. Lett. 3, 205 (2008)

    Article  Google Scholar 

  97. H. Sharma, V. Kaushik, P. Girdhar, V.N. Singh, A.K. Shukla, V.D. Vankar, Enhanced electron emission from titanium coated multiwalled carbon nanotubes. Thin Solid Films 518, 6915 (2010)

    Article  Google Scholar 

  98. Y. Saito, K. Hamaguchi, T. Nishino, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, Field emission patterns from single-walled carbon nanotubes. Jpn. J. Appl. Phys. 36, L1340 (1997)

    Article  Google Scholar 

  99. J.-M. Bonard, J.-P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Châtelain, Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 73, 918 (1998)

    Article  Google Scholar 

  100. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129 (1999)

    Article  Google Scholar 

  101. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75, 873 (1999)

    Article  Google Scholar 

  102. S.M. Sze, VLSI Technology (McGraw Hill, New York, 1988), p. 309

    Google Scholar 

  103. J. Wang, T. Ito, Improved field emission characteristics of nano-structured carbon films deposited on polycrystalline CVD diamond. Diam. Relat. Mater. 16, 364–368 (2007)

    Article  Google Scholar 

  104. E. Stratakis, R. Giorgi, M. Barberoglou, Th Dikonimos, E. Salernitano, N. Lisi, E. Kymakis, Three-dimensional carbon nanowall field emission arrays. Appl. Phys. Lett. 96, 043110 (2010)

    Article  Google Scholar 

  105. W. Takeuchi, H. Kondo, T. Obayashi, M. Hiramatsu, M. Hori, Electron field emission enhancement of carbon nanowalls by plasma surface nitridation. Appl. Phys. Lett. 98, 123107 (2011)

    Article  Google Scholar 

  106. Y. Tzeng, C.-L. Chen, Y.-Y. Chen, C.-Y. Liu, Carbon nanowalls on graphite for cold cathode applications. Diamond & Relat. Mater. 19, 201 (2010)

    Article  Google Scholar 

  107. P.H. Talemi, G.P. Simon, Field emission study of graphene nanowalls prepared by microwave-plasma method. Carbon 49, 2875 (2011)

    Article  Google Scholar 

  108. M.Y. Zhu, R.A. Outlaw, M. Bagge-Hansen, H.J. Chen, D.M. Manos, Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H2 plasma enhanced CVD. Carbon 49, 2526 (2011)

    Article  Google Scholar 

  109. S.A. Evlashin, Y.A. Mankelevich, V.V. Borisov, A.A. Pilevskii, A.S. Stepanov, Victor A. Krivchenko, N.V. Suetin, A.T. Rakhimov, Emission properties of carbon nanowalls on porous silicon. J. Vac. Sci. Technol. B 30, 021801 (2012)

    Google Scholar 

  110. S. Shimada, K. Teii, M. Nakashima, Low threshold field emission from nitrogen-incorporated carbon nanowalls. Diamond & Relat. Mater. 19, 956 (2010)

    Google Scholar 

  111. A. Malesevic, R. Kemps, A. Vanhulsel, M.P. Chowdhury, A. Volodin, C.V. Haesendonck, Field emission from vertically aligned few-layer graphene. J. Appl. Phys. 104, 084301 (2008)

    Article  Google Scholar 

  112. N. Jiang, H.X. Wang, H. Sasaoka, T. Deno, K. Nishimura, Thermal desorption and its effects on field emission properties of carbon nanowalls. Mater. Lett. 64, 2025 (2010)

    Article  Google Scholar 

  113. S. Chhoker, S.K. Arora, P. Srivastava, V.D. Vankar, Electron field emission from graphitic nanoflakes grown over vertically aligned carbon nanotubes. J. Nanosci. Nanotech. 8, 4309 (2008)

    Article  Google Scholar 

  114. V. Kaushik, A.K. Shukla, V.D. Vankar, Microwave plasma CVD-grown graphene–CNT hybrids for enhanced electron field emission applications. Appl. Phys. A 117, 2197 (2014)

    Article  Google Scholar 

  115. V. Kaushik, A.K. Shukla, V.D. Vankar, Improved electron field emission from metal grafted graphene composites. Carbon 62, 337 (2015)

    Article  Google Scholar 

  116. P.R. Bueno, E.R. Leite, Nanostructured Li ion insertion electrodes. 1. Discussion on fast transport and short path for ion diffusion. J. Phys. Chem. B 107, 8868 (2003)

    Article  Google Scholar 

  117. L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nature Mater. 5, 567 (2006)

    Article  Google Scholar 

  118. V.A. Krivchenko, D.M. Itkis, S.A. Evlashin, D.A. Semenenko, E.A. Goodilin, A.T. Rakhimov, A.S. Stepanov, N.V. Suetin, A.A. Pilevsky, P.V. Voronin, Carbon nanowalls decorated with silicon for lithium-ion batteries. Carbon 50, 1422 (2012)

    Article  Google Scholar 

  119. J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, New York, 2003)

    Book  Google Scholar 

  120. E. Antolini, Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B: Environ. 88, 1 (2009)

    Article  Google Scholar 

  121. A.L. Dicks, The role of carbon in fuel cells. J. Power Sources 156, 128 (2006)

    Article  Google Scholar 

  122. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001)

    Article  Google Scholar 

  123. T.W. Kim, I.S. Park, R. Ryoo, A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angew Chem. Int. Ed. 42, 4375 (2003)

    Google Scholar 

  124. M. Tachibana, in Structural Characterization of Carbon Nanowalls and Their Potential Applications in Energy Devices (Chapter 6). Book: Two-Dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications, ed. by Yihong Wu, Zexiang Shen, and Ting Yu, Copyright © 2014 Pan Stanford Publishing Pte. Ltd., pp. 121–152

    Google Scholar 

  125. L. Giorgi, T.D. Makris, R. Giorgi, N. Lisi, E. Salernitano, Electrochemical properties of carbon nanowalls synthesized by HF-CVD. Sens. Actuators B: Chemical 126, 144 (2007)

    Article  Google Scholar 

  126. T. Machino, W. Takeuchi, H. Kano, M. Hiramatsu, M. Hori, Carbon nanostructures with an ultrahigh aspect ratio employing supercritical fluid chemical vapor deposition process. Appl. Phys. Express 2, 025001 (2009)

    Article  Google Scholar 

  127. S.C. Shin, A. Yoshimura, T. Matsuo, M. Mori, M. Tanimura, A. Ishihara, K. Ota, M. Tachibana, Carbon nanowalls as platinum support for fuel cells. J. Appl. Phys. 110, 104308 (2011)

    Article  Google Scholar 

  128. Z. Wang, M. Shoji, K. Baba, T. Ito, H. Ogata, Microwave plasma-assisted regeneration of carbon nanosheets with bi- and trilayer of graphene and their application to photovoltaic cells. Carbon 67, 326 (2014)

    Article  Google Scholar 

  129. Y.H. Jung, W.S. Choi, B. Hong, Post-plasma treatment of a carbon nanowall for use as a counter electrode in a dye-sensitized solar cell. J Korean Phys. Soc. 65, 291 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Srivastava, S.K., Kumar, V., Vankar, V.D. (2018). Carbon Nanowalls: A Potential 2-Dimensional Material for Field Emission and Energy-Related Applications. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_2

Download citation

Publish with us

Policies and ethics