Skip to main content

Unconventional Fluidic Properties of Liquid Metal

  • Chapter
  • First Online:
Liquid Metal Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 10))

Abstract

To promote deep understanding of liquid metal in future biomedical applications where hybrid even multiple phase fluids are often involved, this chapter illustrates the unconventional hydrodynamics from experiment, theory, and simulation aspects. Typical phenomena and basic working mechanisms are explained. Some representative simulation methods are incorporated to tackle the governing functions of the electrohydrodynamics. Further, prospects and challenges are raised, which is to offer a startup insight into the new physics of the hybrid fluid under applied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang XD, Sun Y, Chen S, Liu J (2018) Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied fields. Front Energ. https://doi.org/10.1007/s11708-018-0545-3

    Article  Google Scholar 

  2. Eow JS, Ghadiri M (2003) Motion, deformation and break-up of aqueous drops in oils under high electric field strengths. Chem Eng Process 42(4):259–272

    Article  CAS  Google Scholar 

  3. Eow JS, Ghadiri M, Sharif A (2003) Experimental studies of deformation and break-up of aqueous drops in high electric fields. Colloids Surf A Physicochem Eng Aspects 225(1–3):193–210

    Article  CAS  Google Scholar 

  4. Tsouris C, Depaoli DW, Feng JQ et al (1994) Electrostatic spraying of nonconductive fluids into conductive fluids. AIChE J 40(11):1920–1923

    Article  CAS  Google Scholar 

  5. Choi J, Kim YJ, Lee S et al (2008) Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Appl Phys Lett 93(19):203

    Google Scholar 

  6. Choo RTC, Toguri JM (1992) The electrodynamic behavior of metal and metal sulphide droplets in slags. Can Metall Q 31(2):113–126

    Article  CAS  Google Scholar 

  7. Mangelsdorf CS, White LR (1992) Electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J Chem Soc Faraday Trans 88(24):3567–3581

    Article  CAS  Google Scholar 

  8. O’Brien RW (1978) Electrophoretic mobility of aspherical colloidal particle. J Chem Soc Faraday Trans 74(1):1607–1626

    Article  Google Scholar 

  9. Ory S, Itzchak F, Ehud Y (2013) Electrokinetic flows about conducting drops. J Fluid Mech 722:394–423

    Article  Google Scholar 

  10. Stone HA (2003) Dynamics of drop deformation and breakup in viscous fluids. Ann Rev Fluid Mech 26(26):65–102

    Google Scholar 

  11. Moffatt HK (1980) Rotation of a liquid metal under the action of a rotating magnetic field. MHD-Flows Turbul II(1):45–62

    Google Scholar 

  12. Karyappa RB, Deshmukh SD, Thaokar RM (2014) Breakup of a conducting drop in a uniform electric field. J Fluid Mech 754(754):550–589

    Article  CAS  Google Scholar 

  13. Yang XH, Tan SC, Yuan B et al (2016) Alternating electric field actuated oscillating behavior of liquid metal and its application. Sci China Technol Sci 59(4):597–603

    Article  CAS  Google Scholar 

  14. Plumlee HR (1964) Effects of electrostatic forces on drop collision and coalescence in air

    Google Scholar 

  15. Tryggvason G, Juric D, Nobari MHR et al (1994) Computations of drop collision and coalescence. APS Meeting. APS Meeting Abstracts

    Google Scholar 

  16. Gough RC, Morishita M, Dang JH et al (2015) Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro Nano Syst Lett 3(1):1–9

    Article  Google Scholar 

  17. Zhao X, Xu S, Liu J (2017) Surface tension of liquid metal: role, mechanism and application. Front Energ 2:1–33

    Google Scholar 

  18. Sheng L, Zhang J, Liu J (2014) Diverse transformations of liquid metals between different morphologies. Adv Mater 26(34):6036–6042

    Article  CAS  Google Scholar 

  19. Zhang J, Yao Y, Sheng L et al (2015) Self-fueled biomimetic liquid metal mollusk. Adv Mater 27(16):2648–2655

    Article  CAS  Google Scholar 

  20. Yuan B, Wang L, Yang X, Ding Y, Tan S, Yi L, He Z, Liu J (2016) Liquid metal machine triggered violin-like wire oscillator. Adv Sci 3(10):1600212

    Article  CAS  Google Scholar 

  21. Hu L, Wang L, Ding Y, Liu J (2016) Manipulation of liquid metals on a graphite surface. Adv Mater 28(41):9210

    Article  CAS  Google Scholar 

  22. Yi L, Ding Y, Yuan B, Wang L, Tian L, Chen C, Liu F, Lu J, Song S, Liu J (2016) Breathing to harvest energy as a mechanism towards making a liquid metal beating heart. RSC Adv 6:94692–94698

    Article  CAS  Google Scholar 

  23. Zhao X, Tang J, Liu J (2017) Surfing liquid metal droplet on the same metal bath via electrolyte interface. Appl Phys Lett 111:101603

    Article  CAS  Google Scholar 

  24. Ma KQ, Liu J (2007) Heat-driven liquid metal cooling device for the thermal management of a computer chip. J Phys D Appl Phys 40(15):4722–4729

    Article  CAS  Google Scholar 

  25. Ma K, Liu J (2007) Liquid metal cooling in thermal management of computer chips. Front Energy Power Eng Chin 1(4):384–402

    Article  Google Scholar 

  26. Ma KQ, Liu J, Xiang SH et al (2009) Study of thawing behavior of liquid metal used as computer chip coolant. Int J Therm Sci 48(5):964–974

    Article  CAS  Google Scholar 

  27. Deng Y, Liu J (2010) Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat Mass Transf 46(11–12):1327–1334

    Article  CAS  Google Scholar 

  28. Tan SC, Zhou YX, Wang L et al (2016) Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution. Sci China Technol Sci 59(2):301–308

    Article  CAS  Google Scholar 

  29. Tang J, Wang J, Liu J et al (2016) A volatile fluid assisted thermo-pneumatic liquid metal energy harvester. Appl Phys Lett 108(2):477–650

    Article  CAS  Google Scholar 

  30. Tang W, Jiang T, Fan FR et al (2015) Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Funct Mater 25(24):3718–3725

    Article  CAS  Google Scholar 

  31. Sánchez S, Soler L, Katuri J (2015) Chemically powered micro-and nanomotors. Angew Chem Int Ed 54(5):1414–1444

    Article  CAS  Google Scholar 

  32. Gao M, Gui L (2015) Possibility and mechanism study of liquid-metal based micro electroosmotic flow pumps for long-time running purpose. In: ASME 2015, international conference on nanochannels, microchannels, and minichannels collocated with the ASME 2015 international technical conference and exhibition on packaging and integration of electronic and photonic microsystems, p V001T03A002

    Google Scholar 

  33. Tang SY, Khoshmanesh K, Vijay S, Phred P, O’Mullane AP, Derek A, Mitchell A, Kalantar-zadeh K (2014) Liquid metal enabled pump. Proc Natl Acad Sci USA 111(9):3304–3309

    Article  CAS  Google Scholar 

  34. Liu J (2016) Liquid metal machine is evolving to soft robotics. Sci China Technol Sci 59:1793–1794

    Article  Google Scholar 

  35. Yu YZ, Lu JR, Liu J (2017) 3D printing for functional electronics by injection and package of liquid metals into channels of mechanical structures. Mater Des 122:80–89

    Article  CAS  Google Scholar 

  36. Gui H et al (2017) Spraying printing of liquid metal electronics on various clothes to compose wearable functional device. Sci China Technol Sci 60(2):306–316

    Article  Google Scholar 

  37. Ge H, Li H, Mei S et al (2013) Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energ Rev 21(5):331–346

    Article  CAS  Google Scholar 

  38. Mei S, Gao Y, Li H, et al (2013) Thermally induced porous structures in printed gallium coating to make transparent conductive film. Appl Phys Lett 102(4):041905-1-4

    Article  CAS  Google Scholar 

  39. Vazquez G, Alvarez E, Navaza JM (1995) Surface tension of alcohol + water from 20 to 50 C. J Chem Eng Data 40(3):611–614

    Article  CAS  Google Scholar 

  40. Tan SC, Yuan B, Liu J (2015) Electrical method to control the running direction and speed of self-powered tiny liquid metal motors. Proc Royal Soc A Math Phys Eng Sci 471(2183):32–38

    Article  Google Scholar 

  41. Zhang J, Yao Y, Liu J (2015) Autonomous convergence and divergence of the self-powered soft liquid metal vehicles. Sci Bull 60(10):943–951

    Article  CAS  Google Scholar 

  42. Bojarevičs A, Beinerts T, Sarma M et al (2015) Experiments on liquid metal flow induced by rotating magnetic dipole moment. J Manuf Sci Prod 46(1):4–6

    Google Scholar 

  43. Tan SC, Gui H, Yuan B, Liu L (2015) Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl Phys Lett 18(7):13424

    Google Scholar 

  44. Yuan B, He Z, Fang W et al (2015) Liquid metal spring: oscillating coalescence and ejection of contacting liquid metal droplets. Sci Bull 60(6):648–653

    Article  CAS  Google Scholar 

  45. Yuan B, Tan S, Zhou Y et al (2015) Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Sci Bull 60(13):1203–1210

    Article  Google Scholar 

  46. Sheng L, He Z, Yao Y et al (2015) Transient state machines: transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small 11(39):5178

    Article  Google Scholar 

  47. Fang WQ, He ZZ, Liu J (2014) Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett 105(13):448

    Article  CAS  Google Scholar 

  48. Zhang J, Sheng L, Liu J (2014) Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep 4:7116

    Article  Google Scholar 

  49. Liang H, Yuan B, Jing L (2017) Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. Sci Rep 7(1):7256

    Article  CAS  Google Scholar 

  50. Wang L, Liu J (2015) Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proc Royal Soc A Math Phys Eng Sci 471(2178):20150177

    Article  Google Scholar 

  51. Ma K (2008) Study on liquid metal cooling method for thermal management of computer chip. Dissertation for the doctoral degree. Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing

    Google Scholar 

  52. Xie K (2009) Study on the liquid metal cooling method for thermal management of computer. Dissertation for the master degree. Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing

    Google Scholar 

  53. Morley NB, Burris J, Cadwallader LC et al (2008) GaInSn usage in the research laboratory. Rev Sci Instrum 79(5):112–192

    Article  CAS  Google Scholar 

  54. Pacio J, Wetzel T (2013) Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Sol Energy 93(7):11–22

    Article  CAS  Google Scholar 

  55. Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T, Schaefer JA (2010) Viscosity effect on GaInSn studied by XPS. Surf Interface Anal 36(8):981–985

    Article  CAS  Google Scholar 

  56. Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107(3):701–708

    Article  CAS  Google Scholar 

  57. Gongadze E, Rienen UV, Iglič A (2011) Generalized Stern models of the electric double layer considering the spatial variation of permittivity and finite size of ions in saturation regime. Cell Mol Biol Lett 16(4):576–594

    Article  Google Scholar 

  58. Grahame DC (2003) Electrode processes and the electrical double layer. Surfaces, interfaces, and colloids: principles and applications, 2nd ed. Wiley, pp 337–358

    Article  CAS  Google Scholar 

  59. Saville DA (2003) Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Ann Rev Fluid Mech 29(29):27–64

    Google Scholar 

  60. Smoluchowski MV (1903) Contribution to the theory of electro-osmosis and related phenomena. Bull Int Acad Sci Cracov 3:184–199

    Google Scholar 

  61. Frumkin A (1946) New electrocapillary phenomena. J Colloid Sci 1(3):277–291

    Article  CAS  Google Scholar 

  62. Booth F (1951) The cataphoresis of spherical fluid droplets in electrolytes. J Chem Phys 19(11):1331–1336

    Article  CAS  Google Scholar 

  63. Levich VG, Rice SA (1963) Physicochemical hydrodynamics. Phys Today 16(5):75

    Article  Google Scholar 

  64. Ohshima H, Healy TW (1984) Electrokinetic phenomena in a dilute suspension of charged mercury drops. J Chem Soc Faraday Trans 80(12):1643–1667

    Article  CAS  Google Scholar 

  65. Schnitzer O, Yariv E (2013) Nonlinear electrokinetic flow about a polarized conducting drop. Phys Rev E Stat Nonlinear Soft Matter Phys 87(4):76–89

    Article  CAS  Google Scholar 

  66. Hua J, Liang KL, Wang CH (2008) Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys Fluids 20(11):295

    Article  CAS  Google Scholar 

  67. Teigen KE, Munkejord ST (2010) Influence of surfactant on drop deformation in an electric field. Phys Fluids 22(11):858

    Article  CAS  Google Scholar 

  68. Feng JQ, Scott TC (1996) A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J Fluid Mech 311(311):289–326

    Article  CAS  Google Scholar 

  69. Lü Y, Tian C, He L et al (2015) Numerical simulations on the double-droplets coalescence under the coupling effects of electric field and shearing field. Acta Petrolei Sinica 36:238–245

    Google Scholar 

  70. Melheim JA (2007) Computer simulation of turbulent electrocoalescence. Fakultet for Ingeniørvitenskap Og Teknologi

    Google Scholar 

  71. Wang FC, Feng JT, Zhao YP (2008) The head-on colliding process of binary liquid droplets at low velocity: high-speed photography experiments and modeling. J Colloid Interface Sci 326(1):196–200

    Article  CAS  Google Scholar 

  72. Wang FC, Yang F, Zhao YP (2011) Size effect on the coalescence-induced self-propelled droplet. Appl Phys Lett 98(5):053112-1-3

    Article  CAS  Google Scholar 

  73. Taylor G (1966) Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proc Royal Soc A 291(1425):159–166

    Article  Google Scholar 

  74. Ajayi OO (1978) A note on Taylor’s electrohydrodynamic theory. Proc Royal Soc A 364(1719):499–507

    Article  Google Scholar 

  75. Yuan B, He ZZ, Liu J (2018) Effect of electric field on the wetting behavior of eutectic gallium–indium alloys in aqueous environment. J Electron Mater Interfaces. https://doi.org/10.1007/s11664-018-6134-8

    Article  Google Scholar 

  76. Torza S, Cox RG, Mason SG (1971) Electrohydrodynamic deformation and burst of liquid drops. Philos Trans Royal Soc B Biol Sci 269(1198):295–319

    Article  Google Scholar 

  77. Nichols BD, Hirt CW, Hotchkiss RS (1980) A fractional volume of fluid method for free boundary dynamics. Lect Notes Phys 141:304–309

    Article  Google Scholar 

  78. Tomar G, Gerlach D, Biswas G et al (2007) Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J Comput Phys 227(2):1267–1285

    Article  Google Scholar 

  79. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 47(3):1815–1819

    CAS  Google Scholar 

  80. Zhang J, Kwok DY (2005) A 2D lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory. J Comput Phys 206(1):150–161

    Article  Google Scholar 

  81. Miksis MJ (1981) Shape of a drop in an electric field. Phys Fluids 24(24):1967–1972

    Article  CAS  Google Scholar 

  82. Sherwood JD (2006) Breakup of fluid droplets in electric and magnetic fields. J Fluid Mech 188(188):133–146

    Google Scholar 

  83. Baygents JC, Rivette NJ, Stone HA (1998) Electrohydrodynamic deformation and interaction of drop pairs. J Fluid Mech 368(368):359–375

    Article  CAS  Google Scholar 

  84. Lac E, Homsy GM (2007) Axisymmetric deformation and stability of a viscous drop in a steady electric field. J Fluid Mech 590(590):239–264

    Google Scholar 

  85. Stone HA, Lister JR, Brenner MP (1981) Drops with conical ends in electric and magnetic fields. Proc Royal Soc A 1999(455):329

    Google Scholar 

  86. Tsukada T, Katayama T, Ito Y et al (2005) Theoretical and experimental studies of circulations inside and outside a deformed drop under a uniform electric field. J Chem Eng Jpn 26(6):698–703

    Article  Google Scholar 

  87. Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall

    Google Scholar 

  88. FernáNdez A, Tryggvason G, Che J et al (2005) The effects of electrostatic forces on the distribution of drops in a channel flow: two-dimensional oblate drops. Phys Fluids 17(9):955

    Article  CAS  Google Scholar 

  89. Tryggvason G, Bunner B, Esmaeeli A et al (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2):708–759

    Article  CAS  Google Scholar 

  90. Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Yi, L. (2018). Unconventional Fluidic Properties of Liquid Metal. In: Liquid Metal Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-5607-9_2

Download citation

Publish with us

Policies and ethics