Skip to main content

Model-Based Estimation and Prediction of System Dynamics

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 593 Accesses

Abstract

The dynamic behavior of the forging process is crucial to fabrication of high-quality products and management of the machine’s physical condition. Estimating this dynamic behavior is difficult due to the complexity and strong nonlinearity of the forging process. In this chapter, a model-based dynamic analysis method is proposed to meet this challenge. A model of the complex forging process is first derived and a solving method is then developed to determine the model solution. Using this solution, the conditions of stable run, vibration, and creep are further derived. Experiments and simulations on a practical hydraulic driving process are finally performed to demonstrate and test the effectiveness of these analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Shen, D. Furrer, Manufacturing of aerospace forgings. J. Mater. Process. Technol. 98(2), 189–195 (2000)

    Article  Google Scholar 

  2. J. Cruz, J.A. Ferreira, Testing and Evaluation of Control Strategies for a Prototype Hydraulic Press[C]// ASME 2003, in International Mechanical Engineering Congress and Exposition, (Washington DC, 2003), pp. 195–202

    Google Scholar 

  3. C.Z. Huang, Research on dynamic response characteristic and speed control of moving beam drive system for 300 MN die forging hydraulic press, Ph.D. Dissertation, Central South University, China, 2007

    Google Scholar 

  4. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Industr. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  5. M. Zhang, System Modeling and Dynamic Performance Analysis for Huge Die-forging Press under Extremely Low Speed. (Central South University, 2012)

    Google Scholar 

  6. J. Yao, W. Deng, Z. Jiao, Adaptive control of hydraulic actuators with lugre model-based friction compensation. IEEE Trans. Ind. Electron. 62(10), 6469–6477 (2015)

    Article  Google Scholar 

  7. C.J. Lin, H.T. Yau, Y.C. Tian, Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans. Mechatron. 18(4), 1385–1396 (2013)

    Article  Google Scholar 

  8. M. Ruderman, M. Iwasaki, Observer of nonlinear friction dynamics for motion control. IEEE Trans. Ind. Electron. 62(9), 5941–5949 (2015)

    Article  Google Scholar 

  9. X.J. Lu, M.H. Huang, Nonlinear-measurement-based integrated robust design and control for manufacturing system. IEEE Trans. Ind. Electron. 60(7), 2711–2720 (2013)

    Article  Google Scholar 

  10. K. Lee, C.H. Lee, S. Hwang, J. Choi, Yb Bang, Power-assisted wheelchair with gravity and friction compensation. IEEE Trans. Ind. Electro. 63(4), 2203–2211 (2016)

    Article  Google Scholar 

  11. J.J. Castillo, J.A. Cabrera, A.J. Guerra, A. Simón, A novel electrohydraulic brake system with tire-road friction estimation and continuous brake pressure control. IEEE Trans. Ind. Electron. 60(3), 1863–1875 (2016)

    Article  Google Scholar 

  12. M. Boegli, T.D. Laet, J. De Schutter, J. Swevers, A smoothed GMS friction Model suited for gradient-based friction state and parameter estimation. IEEE/ASME Trans. Mechatron. 19(5), 1593–1602 (2014)

    Article  Google Scholar 

  13. J. Beddoes, M.J. Bibbly, Principles of metal manufacturing process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  14. Z.P. Lin, Engineering computation of deformation force under forging, Mechanical Industry Press, 1986

    Google Scholar 

  15. X.J. Lu, W. Zou, M.H. Huang, K. Deng, A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. Int. J. Mech. Sci. 90, 190–199 (2015)

    Article  Google Scholar 

  16. M.O.A. Mokhtar, Y.K. Younes, T.H. EL Mahdy, N.A. Attia, A theoretical and experimental study on the dynamics of sliding bodies with dry conformal contacts. Wear 218(2), 172–178 (1998)

    Article  Google Scholar 

  17. M. Muraki, E. Kinbara, T. Konishi, A laboratory simulation for stick-slip phenomena on the hydraulic cylinder of a construction machine. Tribol. Int. 36(10), 739–744 (2003)

    Article  Google Scholar 

  18. G. Capone, V. D’Agostino, S.D. Valle, D. Guida, Influence of the variation between static and kinetic friction on stick-slip instability. Wear 161(1-2), 121–126 (1993)

    Article  Google Scholar 

  19. H. Sun, G.T.C. Chiu, Motion synchronization for dual-cylinder electrohydraulic lift systems. IEEE/ASME Trans. Mechatron. 7(2), 171–181 (2002)

    Article  Google Scholar 

  20. J.C. Shen, Q.Z. Lu, C.H. Wu, Jywe W Y., Sliding-mode tracking control with DNLRX model-based friction compensation for the precision stage. IEEE/ASME Trans. Mechatron. 19(2), 788–797 (2014)

    Article  Google Scholar 

  21. O.H. Souza Jr., N. Barbieri, A.H.M. Santos, Study of hydraulic transients in hydropower plants through simulation of nonlinear model of penstock and hydraulic turbine model. IEEE Trans. Power Syst. 14(4), 1269–1272 (1999)

    Article  Google Scholar 

  22. N. Sepehri, Simulation and experimental studies of gear backlash and stick-slip friction in hydraulic excavator swing motion. J. Dyn. Syst. Meas. Contr. 118(3), 463–467 (1996)

    Article  MATH  Google Scholar 

  23. B. Feeny, F.C. Moon, Chaos in a forced dry-friction oscillator: experiments and numerical modeling. J. Sound Vib. 170(3), 303–323 (1994)

    Article  MATH  Google Scholar 

  24. J. Lei, X.J. Lu, Y. Li, M.H. Huang, W. Zou, An approximate-model based estimation method for dynamic response of forging processes. Chin. J. Mech. Eng. 28(2), 1–6 (2015)

    Google Scholar 

  25. Z.N. Wang, M.H. Huang, J.J. Xie, K. Deng, X.J. Lu, Stable operation rules of large die forging press at extremely low speed. J. Cent. S. Univ. (Sci. Technol.) 45(10), 3379–3385 (2014)

    Google Scholar 

  26. X.H. Ye, Y. Cen, H. Zhao, J. Ye, Modeling and simulation of hydraulic spring stiffness-based asymmetrical cylinder controlled by valve. Chin. Mechan. Eng. 22(1), 23–27 (2011)

    Google Scholar 

  27. L.H. Wang, B. Wu, R.S. Du, Nonlinear dynamic characteristics of moving hydraulic cylinder. Chin. J. Mech. Eng. 43(12), 13–19 (2007)

    Article  Google Scholar 

  28. R.F. Cheng, X.F. Wang, Z.F. Yin, Analysis on hydraulic pulsation over-scale and solution for L15. Trainer 1, 46–49 (2011)

    Google Scholar 

  29. Y. S. Chen, Nonlinear vibration, Tianjin Science and Technology Press, 1983

    Google Scholar 

  30. Y.Z. Liu, L.Q. Chen, Nonlinear vibration (Higher Education Press, Beijing, 2003)

    Google Scholar 

  31. Y.M. Wang, The stable oscillation of a class of non-autonomous system. Pure Appl. Math. 11(2), 33–36 (1995)

    MathSciNet  MATH  Google Scholar 

  32. H.P. Sun, J. Bai, The parameter selection and design for M/T high accuracy digital measuring-speed element. Electr. Drive Autom. 20(4), 82–85 (1998)

    MathSciNet  Google Scholar 

  33. Z. Yong, L.J. Wan, D.K. Xiang, Z. Zhi, Study on nonlinear dynamics characteristics of electrohydraulic servo system. Nonlinear Dyn. 80(1-2), 723–737 (2015)

    Article  Google Scholar 

  34. C.Z. Huang, J.P. Tan, J.X. Yang, Dynamic response characteristic of moving beam’s displacement for 300 MN die forging hydraulic press. Int. Conf. Meas. Technol. Mechatron. Autom. 2, 72–75 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Model-Based Estimation and Prediction of System Dynamics. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics