Skip to main content

Novel LS-SVM Modeling Method for Forging Processes with Multiple Localized Solutions

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 598 Accesses

Abstract

In this chapter, a novel least squares support vector machine (LS-SVM) method is developed for modeling unknown forging processes across multiple working regions. The proposed method integrates the advantages of local LS-SVM modeling and global regularization. Local LS-SVM modeling is performed to capture the local dynamics of each local working region. Global regularization is performed to minimize the global error and improve the global generalization of the local models. These features guarantee continuity and smoothness between the local LS-SVM models and avoid over-fitting of each local LS-SVM model. The algorithm developed here is simple and can represent the complex forging process across multiple working regions well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X.J. Lu, M.H. Huang, A simple online modeling approach for a time-varying forging process. Int. J. Adv. Manuf. Technol. 75(5-8), 1197–1205 (2014)

    Article  Google Scholar 

  2. Z.P. Lin, Engineering Computation of Deformation Force Under Forging (Mechanical Industry Press, 1986)

    Google Scholar 

  3. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Industr. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  4. G. Shen, D. Furrer, Manufacturing of aerospace forgings. J. Mater. Process. Technol. 98(2), 189–195 (2000)

    Article  Google Scholar 

  5. J.M. Zheng, S.D. Zhao, S.G. Wei, Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Eng. Prac. 17(12), 1398–1404 (2009)

    Article  Google Scholar 

  6. P.H. Zhu, L. Zhang, R. Zhou, L. Chen, B. Yu, Q. Xie, A novel sensitivity analysis method in structural performance of hydraulic press. Math. Prob. Eng. 2012(2-4), 1101–1114 (2012)

    MATH  Google Scholar 

  7. Q. Liu, X. Bian, Multi-objective optimization of the hydraulic press crossbeam based on neural network and pareto GA. Int. Conf. Adv. Comp. Control (ICACC) 1(8), 52–55 (2010)

    Google Scholar 

  8. B. Armstrong-HeLouvry, P. Dupont, C.C.D. Wit, A Survey of Models. Analysis tools and compensation methods for the control of machines with friction, automatica 30(7), 1083–1138 (1994)

    MATH  Google Scholar 

  9. W.S. Owen, E.A. Croft, The reduction of stick-slip friction in hydraulic actuators. IEEE/ASME Trans. Mechatron. 8(3), 362–371 (2003)

    Article  Google Scholar 

  10. T.H. Lee, K.K. Tan, S. Huang, Adaptive friction compensation with a dynamical friction model. IEEE/ASME Trans. Mechatron. 16(1), 133–140 (2011)

    Article  Google Scholar 

  11. X.J. Lu, Y.B. Li, M.H. Huang, Operation-region-decomposition-based singular value decomposition/neural network modeling method for complex hydraulic press machines. Ind. Eng. Chem. Res. 52(48), 17221–17228 (2013)

    Article  Google Scholar 

  12. S. Srivastava, K. Srivastava, R.S. Sharma, K.H. Raj, Modeling of hot closed die forging of an automotive piston with ANN for intelligent manufacturing. J. Sci. Ind. Res. 63(12), 997–1005 (2004)

    Google Scholar 

  13. Y. Li, J. Li, J. Liu, Application of BP neural network in the control of hydraulic die forging hammer. Int. Conf. Intell. Comput. Technol. Autom. 1, 39–41 (2009)

    Google Scholar 

  14. D. Peng, W. Luo, Y. Zhang, Intelligent control based on SVM prediction forging Hydraulic press. Comp. Meas. Control 20(1), 88–90 (2012)

    Google Scholar 

  15. J.A.K. Suykens, T.V. Gestel, J.D. Brabanter et al., Least squares support vector machines. Int. J. Circuit Theory Appl. 27(6), 605–615 (2002)

    Article  MATH  Google Scholar 

  16. G.L. Wang, Y.F. Li, D.X. Bi, Support vector machine networks for friction modeling. IEEE/ASME Trans. Mechatron. 9(3), 601–606 (2004)

    Article  Google Scholar 

  17. C. Qi, H.X. Li, X. Zhang, X. Zhao, S. Li, F. Gao, Time/space-separation-based SVM modeling for nonlinear distributed parameter processes. Ind. Eng. Chem. Res. 50(1), 332–341 (2010)

    Article  Google Scholar 

  18. J. Zhao, Q. Liu, W. Pedrycz, D. Li, Effective noise estimation-based online prediction for byproduct gas system in steel industry. IEEE Trans. Industr. Inf. 8(4), 953–963 (2012)

    Article  Google Scholar 

  19. Q. Xu, Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse. IEEE Trans. Industr. Electron. 60(9), 3927–3937 (2013)

    Article  Google Scholar 

  20. G. Liu, L. Chen, W. Zhao, Y. Jiang, L. Qu, Internal model control of permanent magnet synchronous motor using support vector machine generalized inverse. IEEE Trans. Ind. Inform. 9(2), 890–898 (2013)

    Article  Google Scholar 

  21. C.F. Juang, G.C. Chen, A T-S fuzzy system learned through a support vector machine in principal component space for real-time object detection. IEEE Trans. Indus. Electron. 59(8), 3309–3320 (2012)

    Article  Google Scholar 

  22. J.C. Wang, C.H. Lin, E. Siahaan, B.W. Chen, H.L. Chuang, Mixed sound event verification on wireless sensor network for home automation. IEEE Trans. Industr. Inf. 10(1), 803–812 (2014)

    Article  Google Scholar 

  23. L. Zhou, K.K. Lai, L. Yu, Least squares support vector machines ensemble models for credit scoring. Expert Syst. Appl. 37(1), 127–133 (2010)

    Article  Google Scholar 

  24. A.S.S. Vasan, B. Long, M. Pecht, Diagnostics and prognostics method for analog electronic circuits. IEEE Trans. Industr. Electron. 60(11), 5277–5291 (2013)

    Article  Google Scholar 

  25. D. You, X. Gao, S. Katayama, Multisensor fusion system for monitoring high-power disk laser welding using support vector machine. IEEE Trans. Industr. Inf. 10(2), 1285–1295 (2014)

    Article  Google Scholar 

  26. W. Kim, J. Park, J. Yoo, H.J. Kim, C.G. Park, Target localization using ensemble support vector regression in wireless sensor networks. IEEE Trans. Cybern. 43(4), 1189–1198 (2013)

    Article  Google Scholar 

  27. L. Jian, Z. Xia, X. Liang, C. Gao, Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Neural Networks 24(5), 476–483 (2011)

    Article  MATH  Google Scholar 

  28. G.J. Qi, Q. Tian, T. Huang, Locality-sensitive support vector machine by exploring local correlation and global regularization. IEEE Conf. Comp. Vision Pattern Recognit. (CVPR) 42(7), 841–848 (2011)

    Google Scholar 

  29. S. Qiu, T. Lane, A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(2), 190–199 (2009)

    Article  Google Scholar 

  30. Q. Gu, J. Han, Clustered support vector machines. The 16th International Conference on Artificial Intelligence and Statistics (AISTATS), 307–315 (2013)

    Google Scholar 

  31. J. Beddoes, M.J. Bibbly, Principles of metal manufacturing process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  32. K. De Brabanter, P. Karsmakers, F. Ojeda, C. Alzate, J. De Brabanter, K. Pelckmans, B. De Moor, J. Vandewalle, J.A.K. Suykens, LS-SVMlab v1.8, http://www.esat.kuleuven.be/sista/lssvmlab/ (2011)

  33. X.J. Lu, W. Zou, M.H. Huang, K. Deng, A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. Int. J. Mech. Sci. 90, 190–199 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Novel LS-SVM Modeling Method for Forging Processes with Multiple Localized Solutions. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics