Skip to main content

Process/Shape-Decomposition Modeling for Deformation Force Estimation

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 595 Accesses

Abstract

The deformation force of a forging is crucial for manufacturing high-quality products and for managing the machine’s physical condition. In this chapter, a process/shape-decomposition modeling method is presented to estimate this deformation force in the complex forging process. The complex forging process is first decomposed into a group of simple sub-processes using system knowledge. In each sub-process, the complex geometric shape is then decomposed into many easily modeled sub-units, upon which the deformation force model of each sub-unit is built as the sub-model. All sub-models are further integrated to form a global deformation force model for the whole forging process. The continuity of this global model are also considered and guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.Z. Huang, Research on dynamic response characteristic and speed control of moving beam drive system for 300MN die forging hydraulic press, Ph.D. Dissertation, Central South University, China, 2007

    Google Scholar 

  2. S.J. Cho, J.C. Lee, Y.H. Jeon, J.W. Jeon, The Development of a Position Conversion Controller for Hydraulic Press Systems. International Conference on Robotics and Biomimetics, 2009, pp. 2019–2022

    Google Scholar 

  3. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Tran. Ind. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  4. J. Beddoes, M.J. Bibbly, Principles of Metal Manufacturing Process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  5. Z.P. Lin, Engineering Computation of Deformation Force Under Forging (Mechanical Industry Press, China, 1986)

    Google Scholar 

  6. I.A. Volkov, Y.G. Korotkikh, Modeling of processes of complex plastic deformation of materials along arbitrary temperature and force loading paths. Mech. Solids 42(6), 897–909 (2007)

    Article  Google Scholar 

  7. E. Ghassemali, M.J. Tan, C.B. Wah, S.C.V. Lim, A.E.W. Jarfors, Experimental and simulation of friction effects in an open-die microforging/extrusion process. J. Micro Nano-Manuf. 2(1), 011005 (2014)

    Google Scholar 

  8. X.J. Lu, Y.B. Li, M.H. Huang, Operation-region-decomposition-based SVD/NN modeling method for complex hydraulic press machines. Ind. Eng. Chem. Res. 52(48), 17221–17228 (2013)

    Article  Google Scholar 

  9. J. Chen, K. Chandrashekhara, V.L. Richards, S.N. Lekakh, Three-dimensional nonlinear finite element analysis of hot radial forging process for large diameter tubes. Mater. Manuf. Processes 25(7), 669–678 (2010)

    Article  Google Scholar 

  10. F.C. Lin, S.Y. Lin, Radius ratio estimation and fold situation prediction of the deformation profile in forging–extrusion process. Comput. Struct. 80(24), 1817–1826 (2002)

    Article  Google Scholar 

  11. S. Kumaran, J.M. Bergadab, The effect of piston grooves performance in an axial piston pumps via CFD analysis. Int. J. Mech. Sci. 66(66), 168–179 (2013)

    Article  Google Scholar 

  12. N.R. Chitkara, A. Aleem, Extrusion of axi-symmetric tubes from hollow and solid circular billets: a generalised slab method of analysis and some experiments. Int. J. Mech. Sci. 43(7), 1661–1684 (2001)

    Article  MATH  Google Scholar 

  13. S.H. Hsiang, S.L. Lin, Application of 3D FEM-slab method to shape rolling. Int. J. Mech. Sci. 43(5), 1155–1177 (2001)

    Article  MATH  Google Scholar 

  14. L. Huang, H. Yang, M. Zhan, Y.L. Liu, Analysis of splitting spinning force by the principal stress method. J. Mater. Process. Technol. 201(1), 267–272 (2008)

    Article  Google Scholar 

  15. N. Fang, Machining with tool–chip contact on the tool secondary rake face-Part I: a new slip-line model. Int. J. Mech. Sci. 44(11), 2337–2354 (2002)

    Article  MATH  Google Scholar 

  16. W.S. Weroński, A. Gontarz, Z.B. Pater, Analysis of the drop forging of a piston using slip-line fields and FEM. Int. J. Mech. Sci. 39(2), 211–220 (1997)

    Article  Google Scholar 

  17. N.R. Chitkara, M.A. Butt, Axisymmetric tube extrusion through a flat-faced circular die: Numerical construction of slip-line fields and associated velocity fields. Int. J. Mech. Sci. 39(3), 341–366 (1997)

    Article  Google Scholar 

  18. A. Ghaei, A. Karimi Taheri, M.R. Movahhedy, A new upper bound solution for analysis of the radial forging process. Int. J. Mech. Sci. 48(11), 1264–1272 (2006)

    Article  MATH  Google Scholar 

  19. K. Komori, An upper bound method for analysis of three-dimensional deformation in the flat rolling of bars. Int. J. Mech. Sci. 44(1), 37–55 (2002)

    Article  MATH  Google Scholar 

  20. N.R. Chitkara, A. Aleem, Axisymmetric tube extrusion/piercing using die–mandrel combinations: some experiments and a generalised upper bound analysis. Int. J. Mech. Sci. 43(7), 1685–1709 (2001)

    Article  MATH  Google Scholar 

  21. C. Chovet, C. Desrayaud, F. Montheillet, A mechanical analysis of the plane strain channel-die compression test: friction effects in hot metal testing. Int. J. Mech. Sci. 44(2), 343–357 (2002)

    Article  MATH  Google Scholar 

  22. J.M. Zheng, S.D. Zhao, S.G. Wei, Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Engineering Practice 17(12), 1398–1404 (2009)

    Article  Google Scholar 

  23. J. Cruz, J. A. Ferreira, Testing and Evaluation of Control Strategies for a Prototype Hydraulic Press. ASME 2003 international mechanical engineering congress & exposition, 2003, pp. 195–202

    Google Scholar 

  24. X.L. Huang, Microstructure evolution simulation and experimental study of 7A85 aluminum aviation joint forging by isothermal forging process, Master thesis, Central South University, Changsha, 2013

    Google Scholar 

  25. G.F. Liao, Simulation and experimental study of aviation joint forging by isothermal forging process, Master thesis, Central South University, Changsha, 2011

    Google Scholar 

  26. User’s Manual, DEFORM-3D v10.2 System Documentation, Scientific Forming Technologies Corporation, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Process/Shape-Decomposition Modeling for Deformation Force Estimation. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics