Skip to main content

Cardiogenic Shock

  • Chapter
  • First Online:
Essentials of Shock Management

Abstract

Shock is the circulatory mismatch between tissue oxygen delivery and demand. Shock has been traditionally classified into four types: hypovolemic, cardiogenic, obstructive, and distributive shock. In various clinical situations, several types of shock can coexist. Diagnosis should be based on comprehensive consideration of clinical, hemodynamic, and biochemical features.

Restoration of tissue oxygenation and function is fundamental in the treatment of shock. Adequate fluid resuscitation is crucial. Early, active fluid supplement should be started. However, volume overload can be harmful. Fluid responsiveness should be monitored during treatment.

In addition, the cause of the shock should be sought aggressively, and cause-specific treatment should be started promptly. These will be discussed in the later part of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen HL, Yarzebski J, Lessard D, et al. Ten-year (2001–2011) trends in the incidence rates and short-term outcomes of early versus late onset cardiogenic shock after hospitalization for acute myocardial infarction. J Am Heart Assoc. 2017;6(6):pii: e005566. https://doi.org/10.1161/JAHA.117.005566.

    Article  Google Scholar 

  2. Davierwala PM, Leontyev S, Verevkin A, et al. Temporal trends in predictors of early and late mortality after emergency coronary artery bypass grafting for cardiogenic shock complicating acute myocardial infarction. Circulation. 2016;134(17):1224–37.

    Article  CAS  Google Scholar 

  3. Hollenberg SM, Kavinsky CJ, Parrillo JE. Cardiogenic shock. Ann Intern Med. 1999;131(1):47–59.

    Article  CAS  Google Scholar 

  4. Brunkhorst FM, Clark AL, Forycki ZF, et al. Pyrexia, procalcitonin, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation. Int J Cardiol. 1999;72(1):3–10.

    Article  CAS  Google Scholar 

  5. Théroux P, Armstrong PW, Mahaffey KW, et al. Prognostic significance of blood markers of inflammation in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: a substudy of the COMMA trial. Eur Heart J. 2005;26(19):1964–70.

    Article  Google Scholar 

  6. Zhang C, Xu X, Potter BJ, et al. TNF-alpha contributes to endothelial dysfunction in ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2006;26(3):475–80.

    Article  CAS  Google Scholar 

  7. Granger CB, Mahaffey KW, Weaver WD, et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation. 2003;108(10):1184–90.

    Article  CAS  Google Scholar 

  8. APEX AMI Investigators, Armstrong PW, Granger CB, et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA. 2007;297(1):43–51.

    Article  Google Scholar 

  9. TRIUMPH Investigators, Alexander JH, Reynolds HR, et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297(15):1657–66.

    Article  Google Scholar 

  10. Dzavík V, Cotter G, Reynolds HR, et al. Effect of nitric oxide synthase inhibition on haemodynamics and outcome of patients with persistent cardiogenic shock complicating acute myocardial infarction: a phase II dose-ranging study. Eur Heart J. 2007;28(9):1109–16.

    Article  Google Scholar 

  11. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med. 1999;341(9):625–34.

    Article  CAS  Google Scholar 

  12. Beyersdorf F, Buckberg GD, Acar C, et al. Cardiogenic shock after acute coronary occlusion. Pathogenesis, early diagnosis, and treatment. Thorac Cardiovasc Surg. 1989;37(1):28–36.

    Article  CAS  Google Scholar 

  13. Jacobs AK, Leopold JA, Bates E, et al. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J Am Coll Cardiol. 2003;41(8):1273–9.

    Article  Google Scholar 

  14. Kohsaka S, Menon V, Lowe AM, et al. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165(14):1643–50.

    Article  Google Scholar 

  15. Chakko S, Woska D, Martinez H, et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am J Med. 1991;90(3):353–9.

    Article  CAS  Google Scholar 

  16. Wang CS, FitzGerald JM, Schulzer M, et al. Does this dyspneic patient in the emergency department have congestive heart failure? JAMA. 2005;294(15):1944–56.

    Article  CAS  Google Scholar 

  17. Fuat A, Murphy JJ, Hungin AP, et al. The diagnostic accuracy and utility of a B-type natriuretic peptide test in a community population of patients with suspected heart failure. Br J Gen Pract. 2006;56(526):327–33.

    PubMed  PubMed Central  Google Scholar 

  18. Yamamoto K, Burnett JC Jr, Bermudez EA, et al. Clinical criteria and biochemical markers for the detection of systolic dysfunction. J Card Fail. 2000;6(3):194–200.

    Article  CAS  Google Scholar 

  19. Cowie MR, Struthers AD, Wood DA, et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet. 1997;350(9088):1349–53.

    Article  CAS  Google Scholar 

  20. Krishnaswamy P, Lubien E, Clopton P, et al. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am J Med. 2001;111(4):274–9.

    Article  CAS  Google Scholar 

  21. Kelder JC, Cramer MJ, Verweij WM, et al. Clinical utility of three B-type natriuretic peptide assays for the initial diagnostic assessment of new slow-onset heart failure. J Card Fail. 2011;17(9):729–34.

    Article  CAS  Google Scholar 

  22. Vogiatzis I, Dapcevic I, Datsios A, et al. A comparison of prognostic value of the levels of ProBNP and troponin T in patients with acute coronary syndrome (ACS). Mediev Archaeol. 2016;70:269–73.

    Google Scholar 

  23. Felker GM, Mentz RJ, Teerlink JR, et al. Serial high sensitivity cardiac troponin T measurement in acute heart failure: insights from the RELAX-AHF study. Eur J Heart Fail. 2015;17(12):1262–70.

    Article  CAS  Google Scholar 

  24. Rukunuzzman M, Latif SA, Rahman M-U, Kirtania K, Islam MT, Ali MO, Hassan MM. Studies on cardiac troponin i in patients with cardiogenic shock. J Dhaka National Med Coll Hos. 2012;18:21–3.

    Google Scholar 

  25. Jolly SS, Shenkman H, Brieger D, et al. Quantitative troponin and death, cardiogenic shock, cardiac arrest and new heart failure in patients with non-ST-segment elevation acute coronary syndromes (NSTE ACS): insight from the Global Registry of Acute Coronary Events. Heart. 2011;97(3):197–202.

    Article  CAS  Google Scholar 

  26. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Circulation. 2004;110(5):588–636.

    Article  Google Scholar 

  27. Reynolds HR, Anand SK, Fox JM, et al. Restrictive physiology in cardiogenic shock: observations from echocardiography. Am Heart J. 2006;151:890.e9–e15.

    Article  Google Scholar 

  28. Valente S, Lazzeri C, Vecchio S, et al. Predictors of in-hospital mortality after percutaneous coronary intervention for cardiogenic shock. Int J Cardiol. 2007;114(2):176–82.

    Article  Google Scholar 

  29. De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    Article  Google Scholar 

  30. Russ MA, Prondzinsky R, Christoph A, et al. Hemodynamic improvement following levosimendan treatment in patients with acute myocardial infarction and cardiogenic shock. Crit Care Med. 2007;35:2732–9.

    CAS  PubMed  Google Scholar 

  31. Fuhrmann JT, Schmeisser A, Schulze MR, et al. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2008;36:2257–66.

    Article  CAS  Google Scholar 

  32. Cuffe MS, Califf RM, Adams KF, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541–7.

    Article  CAS  Google Scholar 

  33. Felker GM, Benza RL, Chandler AB, et al. Heart failure etiology and response to milrinone in decompensated heart failure. J Am Coll Cardiol. 2003;41:997–1003.

    Article  CAS  Google Scholar 

  34. Ramanathan K, Cosmi J, Harkness SM, et al. Reversal of systemic hypoperfusion following intra aortic balloon pumping is associated with improved 30-day survival independent of early revascularization in cardiogenic shock complicating an acute myocardial infarction. Circulation. 2003;108(suppl 1):I-672.

    Google Scholar 

  35. O’Gara PT, Kushner FG, Ascheim DD, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):e362–426.

    Article  Google Scholar 

  36. Chen EW, Canto JG, Parsons LS, et al. Investigators in the National Registry of Myocardial Infarction 2. Relation between hospital intra-aortic balloon counterpulsation volume and mortality in acute myocardial infarction complicated by cardiogenic shock. Circulation. 2003;108(8):951–7.

    Article  Google Scholar 

  37. Urban PM, Freedman RJ, Ohman EM, et al. In-hospital mortality associated with the use of intra-aortic balloon counterpulsation. Am J Cardiol. 2004;94(2):181–5.

    Article  Google Scholar 

  38. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA. 2006;295(21):2511–5.

    Article  Google Scholar 

  39. Zeymer U, Vogt A, Zahn R, et al. Predictors of in-hospital mortality in 1333 patients with acute myocardial infarction complicated by cardiogenic shock treated with primary percutaneous coronary intervention (PCI); Results of the primary PCI registry of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausärzte (ALKK). Eur Heart J. 2004;25:322–8.

    Article  Google Scholar 

  40. White HD, Assmann SF, Sanborn TA, et al. Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: results from the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) trial. Circulation. 2005;112(13):1992–2001.

    Article  Google Scholar 

  41. Sleeper LA, Ramanathan K. Picard MH, et al Functional status and quality of life after emergency revascularization for cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol. 2005;46(2):266–73.

    Article  Google Scholar 

  42. Kar B, Gregoric ID, Basra SS, et al. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57(6):688–96.

    Article  Google Scholar 

  43. Thiele H, Smalling RW, Schuler GC. Percutaneous left ventricular assist devices in acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2007;28(17):2057–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shin, J. (2018). Cardiogenic Shock. In: Suh, G. (eds) Essentials of Shock Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-5406-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5406-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5405-1

  • Online ISBN: 978-981-10-5406-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics