Skip to main content

Hemorrhagic Shock

  • Chapter
  • First Online:
Essentials of Shock Management
  • 2172 Accesses

Abstract

Hemorrhagic shock induces tissue hypoxia, organ dysfunction, and death. Cardiovascular, neuroendocrine, immunologic, and inflammatory reactions are responsible for the pathophysiology of hemorrhagic shock, and the lethal triad of acidosis, hypothermia, and coagulopathy is related with high mortality in patients with severe hemorrhagic shock. Multidisciplinary approaches including prompt assessment, diagnosis, initial resuscitation, transfusion, administration of pharmacologic agents, and bleeding control are crucial for the treatment of hemorrhagic shock. For the initial assessment, focused ultrasonography and multi-detector CT have been widely used, and the viscoelastic methods for coagulopathy are increasingly used. Damage control resuscitation, represented by permissive hypotension, avoidance of aggressive intravenous fluid, and early high ratio transfusion, has recently been emphasized for initial resuscitation. Massive transfusion protocol should be prepared for the severe hemorrhagic shock, and tranexamic acid is also recommended in traumatic shock patients. Operative management and nonoperative management including angioembolization and endovascular occlusion should be performed early for bleeding control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34. https://doi.org/10.1056/NEJMra1208943.

    Article  CAS  PubMed  Google Scholar 

  2. Norton R, Kobusingye O. Injuries. N Engl J Med. 2013;368(18):1723–30. https://doi.org/10.1056/NEJMra1109343.

    Article  CAS  PubMed  Google Scholar 

  3. Moore K. The physiological response to hemorrhagic shock. J Emerg Nurs. 2014;40(6):629–31. https://doi.org/10.1016/j.jen.2014.08.014.

    Article  PubMed  Google Scholar 

  4. Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384(9952):1455–65. https://doi.org/10.1016/S0140-6736(14)60687-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soreide K. Clinical and translational aspects of hypothermia in major trauma patients: from pathophysiology to prevention, prognosis and potential preservation. Injury. 2014;45(4):647–54. https://doi.org/10.1016/j.injury.2012.12.027.

    Article  PubMed  Google Scholar 

  6. Martini WZ, Holcomb JB. Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs. Ann Surg. 2007;246(5):831–5. https://doi.org/10.1097/SLA.0b013e3180cc2e94.

    Article  PubMed  Google Scholar 

  7. Wolberg AS, Meng ZH, Monroe DM 3rd, Hoffman M. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma. 2004;56(6):1221–8.

    Article  CAS  PubMed  Google Scholar 

  8. Giordano S, Spiezia L, Campello E, Simioni P. The current understanding of trauma-induced coagulopathy (TIC): a focused review on pathophysiology. Intern Emerg Med. 2017; https://doi.org/10.1007/s11739-017-1674-0.

  9. Subcommittee A, American College of Surgeons’ Committee on T, International Awg. Advanced trauma life support (ATLS(R)): the ninth edition. J Trauma Acute Care Surg. 2013;74(5):1363–6. https://doi.org/10.1097/TA.0b013e31828b82f5.

    Article  Google Scholar 

  10. Maegele M. Frequency, risk stratification and therapeutic management of acute post-traumatic coagulopathy. Vox Sang. 2009;97(1):39–49. https://doi.org/10.1111/j.1423-0410.2009.01179.x.

    Article  CAS  PubMed  Google Scholar 

  11. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100. https://doi.org/10.1186/s13054-016-1265-x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fox JC, Boysen M, Gharahbaghian L, Cusick S, Ahmed SS, Anderson CL, et al. Test characteristics of focused assessment of sonography for trauma for clinically significant abdominal free fluid in pediatric blunt abdominal trauma. Acad Emerg Med. 2011;18(5):477–82. https://doi.org/10.1111/j.1553-2712.2011.01071.x.

    Article  PubMed  Google Scholar 

  13. Richards JR, Schleper NH, Woo BD, Bohnen PA, McGahan JP. Sonographic assessment of blunt abdominal trauma: a 4-year prospective study. J Clin Ultrasound. 2002;30(2):59–67.

    Article  PubMed  Google Scholar 

  14. Stengel D, Bauwens K, Sehouli J, Porzsolt F, Rademacher G, Mutze S, et al. Systematic review and meta-analysis of emergency ultrasonography for blunt abdominal trauma. Br J Surg. 2001;88(7):901–12. https://doi.org/10.1046/j.0007-1323.2001.01777.x.

    Article  CAS  PubMed  Google Scholar 

  15. Becker CD, Poletti PA. The trauma concept: the role of MDCT in the diagnosis and management of visceral injuries. Eur Radiol. 2005;15(Suppl 4):D105–9.

    Article  PubMed  Google Scholar 

  16. Weninger P, Mauritz W, Fridrich P, Spitaler R, Figl M, Kern B, et al. Emergency room management of patients with blunt major trauma: evaluation of the multislice computed tomography protocol exemplified by an urban trauma center. J Trauma. 2007;62(3):584–91. https://doi.org/10.1097/01.ta.0000221797.46249.ee.

    Article  PubMed  Google Scholar 

  17. Anderson SW, Varghese JC, Lucey BC, Burke PA, Hirsch EF, Soto JA. Blunt splenic trauma: delayed-phase CT for differentiation of active hemorrhage from contained vascular injury in patients. Radiology. 2007;243(1):88–95. https://doi.org/10.1148/radiol.2431060376.

    Article  PubMed  Google Scholar 

  18. Wu CH, Wang LJ, Wong YC, Fang JF, Lin BC, Chen HW, et al. Contrast-enhanced multiphasic computed tomography for identifying life-threatening mesenteric hemorrhage and transmural bowel injuries. J Trauma. 2011;71(3):543–8. https://doi.org/10.1097/TA.0b013e3181fef15e.

    Article  PubMed  Google Scholar 

  19. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J. Lactate clearance and survival following injury. J Trauma. 1993;35(4):584–8; discussion 8–9.

    Article  CAS  PubMed  Google Scholar 

  20. Manikis P, Jankowski S, Zhang H, Kahn RJ, Vincent JL. Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med. 1995;13(6):619–22. https://doi.org/10.1016/0735-6757(95)90043-8.

    Article  CAS  PubMed  Google Scholar 

  21. Arnold TD, Miller M, van Wessem KP, Evans JA, Balogh ZJ. Base deficit from the first peripheral venous sample: a surrogate for arterial base deficit in the trauma bay. J Trauma. 2011;71(4):793–7. https://doi.org/10.1097/TA.0b013e31822ad694; discussion 7.

    Article  PubMed  Google Scholar 

  22. Davis JW, Kaups KL, Parks SN. Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock. J Trauma. 1998;44(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  23. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44. https://doi.org/10.1097/01.TA.0000075338.21177.EF.

    Article  PubMed  Google Scholar 

  24. Mann KG, Butenas S, Brummel K. The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol. 2003;23(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  25. Benes J, Zatloukal J, Kletecka J. Viscoelastic methods of blood clotting assessment—a multidisciplinary review. Front Med. 2015;2:62. https://doi.org/10.3389/fmed.2015.00062.

    Article  Google Scholar 

  26. Hanke AA, Horstmann H, Wilhelmi M. Point-of-care monitoring for the management of trauma-induced bleeding. Curr Opin Anaesthesiol. 2017;30(2):250–6. https://doi.org/10.1097/ACO.0000000000000448.

    Article  PubMed  Google Scholar 

  27. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG(R)) and rotational thromboelastometry (ROTEM(R)) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518. https://doi.org/10.1186/s13054-014-0518-9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabyan A, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263(6):1051–9. https://doi.org/10.1097/SLA.0000000000001608.

    Article  PubMed  Google Scholar 

  29. Hess JR, Holcomb JB, Hoyt DB. Damage control resuscitation: the need for specific blood products to treat the coagulopathy of trauma. Transfusion. 2006;46(5):685–6. https://doi.org/10.1111/j.1537-2995.2006.00816.x.

    Article  PubMed  Google Scholar 

  30. Briggs A, Askari R. Damage control resuscitation. Int J Surg. 2016;33(Pt B):218–21. https://doi.org/10.1016/j.ijsu.2016.03.064.

    Article  PubMed  Google Scholar 

  31. Camazine MN, Hemmila MR, Leonard JC, Jacobs RA, Horst JA, Kozar RA, et al. Massive transfusion policies at trauma centers participating in the American College of Surgeons Trauma Quality Improvement Program. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S48–53. https://doi.org/10.1097/TA.0000000000000641.

    Article  PubMed  Google Scholar 

  32. Waydhas C. German Society of Trauma S. [Preclinical management of multiples injuries: S3 guideline]. Unfallchirurg. 2012;115(1):8–13. https://doi.org/10.1007/s00113-011-2102-y.

    Article  CAS  PubMed  Google Scholar 

  33. Haut ER, Kalish BT, Cotton BA, Efron DT, Haider AH, Stevens KA, et al. Prehospital intravenous fluid administration is associated with higher mortality in trauma patients: a National Trauma Data Bank analysis. Ann Surg. 2011;253(2):371–7. https://doi.org/10.1097/SLA.0b013e318207c24f.

    Article  PubMed  Google Scholar 

  34. Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63. https://doi.org/10.1097/TA.0b013e31820e77ea.

    Article  PubMed  Google Scholar 

  35. Berry C, Ley EJ, Bukur M, Malinoski D, Margulies DR, Mirocha J, et al. Redefining hypotension in traumatic brain injury. Injury. 2012;43(11):1833–7. https://doi.org/10.1016/j.injury.2011.08.014.

    Article  PubMed  Google Scholar 

  36. James MF, Michell WL, Joubert IA, Nicol AJ, Navsaria PH, Gillespie RS. Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the FIRST trial (Fluids in Resuscitation of Severe Trauma). Br J Anaesth. 2011;107(5):693–702. https://doi.org/10.1093/bja/aer229.

    Article  CAS  PubMed  Google Scholar 

  37. Rasmussen KC, Johansson PI, Hojskov M, Kridina I, Kistorp T, Thind P, et al. Hydroxyethyl starch reduces coagulation competence and increases blood loss during major surgery: results from a randomized controlled trial. Ann Surg. 2014;259(2):249–54. https://doi.org/10.1097/SLA.0000000000000267.

    Article  PubMed  Google Scholar 

  38. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56. https://doi.org/10.1056/NEJMoa040232.

    Article  CAS  PubMed  Google Scholar 

  39. Investigators SS, Australian, New Zealand Intensive Care Society Clinical Trials G, Australian Red Cross Blood S, George Institute for International H, Myburgh J et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84. https://doi.org/10.1056/NEJMoa067514.

    Article  Google Scholar 

  40. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567. https://doi.org/10.1002/14651858.CD000567.pub6.

    Article  Google Scholar 

  41. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72. https://doi.org/10.1001/jama.2012.13356.

    Article  CAS  PubMed  Google Scholar 

  42. Young JB, Utter GH, Schermer CR, Galante JM, Phan HH, Yang Y, et al. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014;259(2):255–62. https://doi.org/10.1097/SLA.0b013e318295feba.

    Article  PubMed  Google Scholar 

  43. Wade CE, Grady JJ, Kramer GC. Efficacy of hypertonic saline dextran fluid resuscitation for patients with hypotension from penetrating trauma. J Trauma. 2003;54(5 Suppl):S144–8. https://doi.org/10.1097/01.TA.0000047223.62617.AB.

    Article  CAS  PubMed  Google Scholar 

  44. Bulger EM, May S, Kerby JD, Emerson S, Stiell IG, Schreiber MA, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41. https://doi.org/10.1097/SLA.0b013e3181fcdb22.

    Article  PubMed  Google Scholar 

  45. Gelman S, Mushlin PS. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. Anesthesiology. 2004;100(2):434–9.

    Article  PubMed  Google Scholar 

  46. Kutcher ME, Howard BM, Sperry JL, Hubbard AE, Decker AL, Cuschieri J, et al. Evolving beyond the vicious triad: Differential mediation of traumatic coagulopathy by injury, shock, and resuscitation. J Trauma Acute Care Surg. 2015;78(3):516–23. https://doi.org/10.1097/TA.0000000000000545.

    Article  CAS  PubMed  Google Scholar 

  47. Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma. 1998;44(5):846–54.

    Article  CAS  PubMed  Google Scholar 

  48. Bernabei AF, Levison MA, Bender JS. The effects of hypothermia and injury severity on blood loss during trauma laparotomy. J Trauma. 1992;33(6):835–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hoey BA, Schwab CW. Damage control surgery. Scand J Surg. 2002;91(1):92–103. https://doi.org/10.1177/145749690209100115.

    Article  CAS  PubMed  Google Scholar 

  50. Holcomb JB, Donathan DP, Cotton BA, Del Junco DJ, Brown G, Wenckstern TV, et al. Prehospital transfusion of plasma and red blood cells in trauma patients. Prehosp Emerg Care. 2015a;19(1):1–9. https://doi.org/10.3109/10903127.2014.923077.

    Article  PubMed  Google Scholar 

  51. Rahbar E, Fox EE, del Junco DJ, Harvin JA, Holcomb JB, Wade CE, et al. Early resuscitation intensity as a surrogate for bleeding severity and early mortality in the PROMMTT study. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S16–23. https://doi.org/10.1097/TA.0b013e31828fa535.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Savage SA, Zarzaur BL, Croce MA, Fabian TC. Redefining massive transfusion when every second counts. J Trauma Acute Care Surg. 2013;74(2):396–400. https://doi.org/10.1097/TA.0b013e31827a3639; discussion -2.

    Article  PubMed  Google Scholar 

  53. Cantle PM, Cotton BA. Prediction of massive transfusion in trauma. Crit Care Clin. 2017;33(1):71–84. https://doi.org/10.1016/j.ccc.2016.08.002.

    Article  PubMed  Google Scholar 

  54. Nunez TC, Voskresensky IV, Dossett LA, Shinall R, Dutton WD, Cotton BA. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66(2):346–52. https://doi.org/10.1097/TA.0b013e3181961c35.

    Article  PubMed  Google Scholar 

  55. Dente CJ, Shaz BH, Nicholas JM, Harris RS, Wyrzykowski AD, Patel S, et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma. 2009;66(6):1616–24. https://doi.org/10.1097/TA.0b013e3181a59ad5.

    Article  PubMed  Google Scholar 

  56. Savage SA, Zarzaur BL, Croce MA, Fabian TC. Time matters in 1: 1 resuscitations: concurrent administration of blood: plasma and risk of death. J Trauma Acute Care Surg. 2014;77(6):833–7. https://doi.org/10.1097/TA.0000000000000355; discussion 7–8.

    Article  PubMed  Google Scholar 

  57. Holcomb JB, del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–36. https://doi.org/10.1001/2013.jamasurg.387.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ho AM, Dion PW, Yeung JH, Holcomb JB, Critchley LA, Ng CS, et al. Prevalence of survivor bias in observational studies on fresh frozen plasma: erythrocyte ratios in trauma requiring massive transfusion. Anesthesiology. 2012;116(3):716–28. https://doi.org/10.1097/ALN.0b013e318245c47b.

    Article  PubMed  Google Scholar 

  59. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015b;313(5):471–82. https://doi.org/10.1001/jama.2015.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas J, Martini WZ, et al. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma. 2008;64(2 Suppl):S79–85. https://doi.org/10.1097/TA.0b013e318160a57b; discussion S.

    Article  CAS  PubMed  Google Scholar 

  61. Cole E, Davenport R, Willett K, Brohi K. Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study. Ann Surg. 2015;261(2):390–4. https://doi.org/10.1097/SLA.0000000000000717.

    Article  PubMed  Google Scholar 

  62. Collaborators C, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. https://doi.org/10.1016/S0140-6736(10)60835-5.

    Article  CAS  Google Scholar 

  63. Collaborators C, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101, 101 e1–2. https://doi.org/10.1016/S0140-6736(11)60278-X.

    Article  CAS  Google Scholar 

  64. Collaborators WT. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389(10084):2105–16. https://doi.org/10.1016/S0140-6736(17)30638-4.

    Article  Google Scholar 

  65. Ho KM, Leonard AD. Concentration-dependent effect of hypocalcaemia on mortality of patients with critical bleeding requiring massive transfusion: a cohort study. Anaesth Intensive Care. 2011;39(1):46–54.

    CAS  PubMed  Google Scholar 

  66. Magnotti LJ, Bradburn EH, Webb DL, Berry SD, Fischer PE, Zarzaur BL, et al. Admission ionized calcium levels predict the need for multiple transfusions: a prospective study of 591 critically ill trauma patients. J Trauma. 2011;70(2):391–5. https://doi.org/10.1097/TA.0b013e31820b5d98; discussion 5–7.

    Article  CAS  PubMed  Google Scholar 

  67. Jiang M, Chen P, Gao Q. Systematic review and net-work meta-analysis of upper gastrointestinal hemorrhage interventions. Cell Physiol Biochem. 2016;39(6):2477–91. https://doi.org/10.1159/000452515.

    Article  CAS  PubMed  Google Scholar 

  68. Hernandez-Gea V, Berbel C, Baiges A, Garcia-Pagan JC. Acute variceal bleeding: risk stratification and management (including TIPS). Hepatol Int. 2017; https://doi.org/10.1007/s12072-017-9804-3.

  69. Morrison JJ, Galgon RE, Jansen JO, Cannon JW, Rasmussen TE, Eliason JL. A systematic review of the use of resuscitative endovascular balloon occlusion of the aorta in the management of hemorrhagic shock. J Trauma Acute Care Surg. 2016;80(2):324–34. https://doi.org/10.1097/TA.0000000000000913.

    Article  CAS  PubMed  Google Scholar 

  70. Lelkens CC, Koning JG, de Kort B, Floot IB, Noorman F. Experiences with frozen blood products in the Netherlands military. Transfus Apher Sci. 2006;34(3):289–98. https://doi.org/10.1016/j.transci.2005.11.008.

    Article  CAS  PubMed  Google Scholar 

  71. Martinaud C, Ausset S, Deshayes AV, Cauet A, Demazeau N, Sailliol A. Use of freeze-dried plasma in French intensive care unit in Afghanistan. J Trauma. 2011;71(6):1761–4. https://doi.org/10.1097/TA.0b013e31822f1285; discussion 4–5.

    Article  PubMed  Google Scholar 

  72. Murdock AD, Berseus O, Hervig T, Strandenes G, Lunde TH. Whole blood: the future of traumatic hemorrhagic shock resuscitation. Shock. 2014;41(Suppl 1):62–9. https://doi.org/10.1097/SHK.0000000000000134.

    Article  PubMed  Google Scholar 

  73. Snyder EL, Whitley P, Kingsbury T, Miripol J, Tormey CA. In vitro and in vivo evaluation of a whole blood platelet-sparing leukoreduction filtration system. Transfusion. 2010;50(10):2145–51. https://doi.org/10.1111/j.1537-2995.2010.02701.x.

    Article  CAS  PubMed  Google Scholar 

  74. Moradi S, Jahanian-Najafabadi A, Roudkenar MH. Artificial blood substitutes: first steps on the long route to clinical utility. Clin Med Insights Blood Disord. 2016;9:33–41. https://doi.org/10.4137/CMBD.S38461.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hirose S, Takayama N, Nakamura S, Nagasawa K, Ochi K, Hirata S, et al. Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells. Stem Cell Rep. 2013;1(6):499–508. https://doi.org/10.1016/j.stemcr.2013.10.010.

    Article  CAS  Google Scholar 

  76. Olivier E, Qiu C, Bouhassira EE. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood. Stem Cells Transl Med. 2012;1(8):604–14. https://doi.org/10.5966/sctm.2012-0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martin DT, Schreiber MA. Modern resuscitation of hemorrhagic shock: what is on the horizon? Eur J Trauma Emerg Surg. 2014;40(6):641–56. https://doi.org/10.1007/s00068-014-0416-5.

    Article  CAS  PubMed  Google Scholar 

  78. Kutcher ME, Forsythe RM, Tisherman SA. Emergency preservation and resuscitation for cardiac arrest from trauma. Int J Surg. 2016;33(Pt B):209–12. https://doi.org/10.1016/j.ijsu.2015.10.014.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Hwan Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jo, Y.H., Choi, SH. (2018). Hemorrhagic Shock. In: Suh, G. (eds) Essentials of Shock Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-5406-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5406-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5405-1

  • Online ISBN: 978-981-10-5406-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics