Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 647 Accesses

Abstract

The heterostructure of graphene and h-BN is predicted to show many excellent physical properties, such as, bandgap opening, ultra-high carrier mobility, antiferromagnetic and half-semimetallic characteristics. In the first section of this chapter, I will give a brief review of the novel properties and the reported synthesis methods of h-BN-G heterostructures. The process of preparation of h-BN-G in-plane heterostructures is maturing, but some important basic scientific problems are still not solved. For example, the atomic structures and electronic properties on the interface between graphene and h-BN. The second section of this chapter introduces the UHV two-step growth method and the weak influence substrate Ir(111) single crystal with little electron doping effect on graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Zhao R, Yang M, Liu Z, Liu Z (2013) Inverse relationship between carrier mobility and bandgap in graphene. J Chem Phys 138:084701

    Article  Google Scholar 

  2. Ramasubramaniam A, Naveh D (2011) Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride. Phys Rev B 84:173

    Google Scholar 

  3. Jiang JW, Wang JS, Wang BS (2011) Minimum thermal conductance in graphene and boron nitride superlattice. Appl Phys Lett 99:043109

    Article  Google Scholar 

  4. Pruneda JM (2010) Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys Rev B 81:2149

    Article  Google Scholar 

  5. Kaner RB, Kouvetakis J, Warble CE, Sattler ML, Bartlett N (1987) Boron-carbon-nitrogen materials of graphite-like structure. Mater Res Bull 22:399

    Article  Google Scholar 

  6. Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L (2010) atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430

    Article  Google Scholar 

  7. Levendorf MP, Kim CJ, Brown L, Huang PY, Havener RW, Muller DA, Park J (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627

    Article  Google Scholar 

  8. Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg KP (2013) In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol 8:119

    Article  Google Scholar 

  9. Liu L, Park J, Siegel DA, McCarty KF, Clark KW, Deng W, Basile L, Carlos Idrobo J, Li AP, Gu G (2014) Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343:163

    Article  Google Scholar 

  10. Sutter P, Cortes R, Lahiri J, Sutter E (2012) Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett 12:4869

    Article  Google Scholar 

  11. Lu J, Zhang K, Liu XF, Zhang H, Sum TC, Castro Neto AH, Loh KP (2013) Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nat Commun 4:2681

    Google Scholar 

  12. Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X (2013) Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett 13:3439

    Article  Google Scholar 

  13. Sutter P, Sadowski JT, Sutter EA (2010) Chemistry under cover: tuning metal-graphene interaction by reactive intercalation. J Am Chem Soc 132:8175

    Article  Google Scholar 

  14. Usachov D, Fedorov A, Vilkov O, Adamchuk VK, Yashina LV, Bondarenko L, Saranin AA, Grüneis A, Vyalikh DV (2012) Experimental and computational insight into the properties of the lattice-mismatched structures: monolayers of h-BN and graphene on Ir(111). Phys Rev B 86:119

    Article  Google Scholar 

  15. Boneschanscher MP, van der Lit J, Sun Z, Swart I, Liljeroth P, Vanmaekelbergh D (2012) Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 6:10216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengxi Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, M. (2018). Controlled Synthesis of in-Plane h-BN-G Heterostructures. In: Controlled Synthesis and Scanning Tunneling Microscopy Study of Graphene and Graphene-Based Heterostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-5181-4_4

Download citation

Publish with us

Policies and ethics