Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1065 Accesses

Abstract

In the 1980s, the invention of scanning tunneling microscope (STM) opened the door to observe the world from the atomic scale. For STM, good resolution is considered to be 0.1 nm lateral resolution and 0.01 nm (10 pm) depth resolution. With this resolution, individual atoms within materials are routinely imaged and manipulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H (1983) Scanning tunneling microscopy. IBM J Res Dev 126:236

    Google Scholar 

  2. Chen CJ (1993) Introduction to scanning tunneling microscopy (Vol. 4). Oxford University Press on Demand

    Google Scholar 

  3. Stolyarova E, Flynn GW (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci 104:9209

    Article  Google Scholar 

  4. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312

    Article  Google Scholar 

  5. Gao T, Xie S, Gao Y, Liu M, Chen Y, Zhang Y, Liu Z (2011) Growth and atomic-scale characterizations of graphene on multifaceted textured pt foils prepared by chemical vapor deposition. ACS Nano 5:9194

    Article  Google Scholar 

  6. Li G, Luican A, Lopes dos Santos JMB, Castro Neto AH, Reina A, Kong J, Andrei EY (2009) Observation of Van Hove singularities in twisted graphene layers. Nat Phys 6:109

    Google Scholar 

  7. Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi JD, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy BJ (2012) Emergence of superlattice dirac points in graphene on hexagonal boron nitride. Nat Phys 8:382

    Google Scholar 

  8. Zhao L, He R, Rim KT, Schiros T, Kim KS, Zhou H, Gutiérrez C, Chockalingam SP, Arguello CJ, Pálová L (2011) Visualizing individual nitrogen dopants in monolayer graphene. Science 333:999

    Article  Google Scholar 

  9. Rutter GM, Crain JN, Guisinger NP, Li T, First PN, Stroscio JA (2007) Scattering and interference in epitaxial graphene. Science 317:219

    Article  Google Scholar 

  10. Lahiri J, Lin Y, Bozkurt P, Oleynik II, Batzill M (2010) An extended defect in graphene as a metallic wire. Nat Nanotechnol 5:326

    Google Scholar 

  11. Červenka J, Katsnelson MI, Flipse CFJ (2009) Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat Phys 5:840

    Article  Google Scholar 

  12. Dewar MJS (1987) A new mechanism for superconductivity. Angew Chem, Int Ed Engl 26:1273

    Article  Google Scholar 

  13. Gonzalez J (2008) Kohn-Luttinger superconductivity in graphene. Phys Rev B 78:205431

    Article  Google Scholar 

  14. Fleck M, Ole AM, Hedin L (1997) Magnetic phases near the Van Hove singularity in S- and D-band Hubbard models. Phys Rev B 56:3159

    Google Scholar 

  15. Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengxi Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, M. (2018). STM Study of Twisted Bilayer Graphene. In: Controlled Synthesis and Scanning Tunneling Microscopy Study of Graphene and Graphene-Based Heterostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-5181-4_3

Download citation

Publish with us

Policies and ethics