Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Compared with monolayer graphene, bilayer graphene displays even more complex electronic band structures and intriguing properties. Recent studies reveal that the low-energy band structure of bilayer graphene is extremely sensitive to the stacking order. Two low-energy VHSs, which originate from the two saddle points in the band structure, were observed in the twisted graphene bilayer as two pronounced peaks in the DOS. The VHSs will induce novel physical properties, such as, superconductivity and magnetism. Therefore, the preparation of large area non-AB-stacked bilayer graphene is an efficient way to modify the energy band structure near Fermi level. Combined with the preparation methods of graphene introduced in Chap. 1, especially the growth method of bilayer graphene, I choose segregation growth as a method for preparing non-AB stacking bilayer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan K, Fu L, Peng H, Liu Z (2013) Designed CVD growth of graphene via process engineering. Acc Chem Res 46:2263

    Article  Google Scholar 

  2. Liu N, Fu L, Dai B, Yan K, Liu X, Zhao R, Zhang Y, Liu Z (2010) Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett 11:297

    Article  Google Scholar 

  3. Ramón ME, Gupta A, Corbet C, Ferrer DA, Movva HCP, Carpenter G, Colombo L, Bourianoff G, Doczy M, Akinwande D (2011) Cmos-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5:7198

    Article  Google Scholar 

  4. Ma D, Liu M, Gao T, Li C, Sun J, Nie Y, Ji Q, Zhang Y, Song X, Zhang Y, Liu Z (2014) High-quality monolayer graphene synthesis on pd foils via the suppression of multilayer growth at grain boundaries. Small 10:4003

    Article  Google Scholar 

  5. Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C (2010) Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett 1:3101

    Article  Google Scholar 

  6. Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf Sci 43:493

    Article  Google Scholar 

  7. Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T (2011) In-situ observation of graphene growth on Ni(111). Surf Sci 605:1095

    Article  Google Scholar 

  8. Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin HJ, Choi JY, Pribat D, Lee YH (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144

    Article  Google Scholar 

  9. Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2:509

    Article  Google Scholar 

  10. Sicot M, Bouvron S, Zander O, Rüdiger U, Dedkov YS, Fonin M (2010) Nucleation and growth of nickel nanoclusters on graphene Moiré on Rh(111). Appl Phys Lett 96:093115

    Article  Google Scholar 

  11. Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G (2011) Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res 4:1208

    Article  Google Scholar 

  12. Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda K, Mizuno S (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4:7407

    Article  Google Scholar 

  13. Kim E, An H, Jang H, Cho WJ, Lee N, Lee WG, Jung J (2011) Growth of few-layer graphene on a thin cobalt film on a Si/SiO2 substrate. Chem Vap Deposition 17:9

    Article  Google Scholar 

  14. Sutter E, Albrecht P, Sutter P (2009) Graphene growth on polycrystalline Ru thin films. Appl Phys Lett 95:133109

    Article  Google Scholar 

  15. Sutter E, Acharya DP, Sadowski JT, Sutter P (2009) Scanning tunneling microscopy on epitaxial bilayer graphene on ruthenium (0001). Appl Phys Lett 94:133101

    Article  Google Scholar 

  16. Sutter P, Hybertsen MS, Sadowski JT, Sutter E (2009) Electronic structure of few-layer epitaxial graphene on Ru (0001). Nano Lett 9:2654

    Article  Google Scholar 

  17. Que Y, Xiao W, Fei X, Chen H, Huang L, Du SX, Gao HJ (2014) Epitaxial growth of large-area bilayer graphene on Ru (0001). Appl Phys Lett 104:093110

    Article  Google Scholar 

  18. Nie S, Walter AL, Bartelt NC, Starodub E, Bostwick A, Rotenberg E, McCarty KF (2011) Growth from below: graphene bilayers on Ir (111). ACS Nano 5:2298

    Article  Google Scholar 

  19. Liu X, Fu L, Liu N, Gao T, Zhang Y, Liao L, Liu Z (2011) Segregation growth of graphene on Cu–Ni Alloy for precise layer control. J Phys Chem C 115:11976

    Article  Google Scholar 

  20. Chen S, Cai W, Piner RD, Suk JW, Wu Y, Ren Y, Kang J, Ruoff RS (2011) Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett 11:3519

    Article  Google Scholar 

  21. Wu Y,Chou H, Ji H, Wu Q, Chen S, Jiang W, Hao Y, Kang J, Ren Y, Piner RD (2012) Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu–Ni alloy foils. ACS Nano 6:7731

    Google Scholar 

  22. Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z (2013) Single and polycrystalline graphene on Rh(111) following different growth mechanisms. Small 9:1360

    Article  Google Scholar 

  23. Voloshina EN, Dedkov YS, Torbrügge S, Thissen A, Fonin M (2012) Graphene on Rh(111): scanning tunneling and atomic force microscopies studies. Appl Phys Lett 100:241606

    Article  Google Scholar 

  24. Wang B, Caffio M, Bromley C, Früchtl H, Schaub R (2010) Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 4:5773

    Article  Google Scholar 

  25. Reina A, Son H, Jiao L, Fan B, Dresselhaus MS, Liu Z, Kong J (2008) Transferring and identification of single-and few-layer graphene on arbitrary substrates. J Phys Chem C 112:17741

    Article  Google Scholar 

  26. Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma LP, Zhang Z, Fu Q, Peng LM (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengxi Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, M. (2018). Controllable Synthesis of Graphene on Rh. In: Controlled Synthesis and Scanning Tunneling Microscopy Study of Graphene and Graphene-Based Heterostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-5181-4_2

Download citation

Publish with us

Policies and ethics