Skip to main content

Machine-Learning Based Approaches for Cloud Brokering

  • Chapter
  • First Online:
Cloud Broker and Cloudlet for Workflow Scheduling

Part of the book series: KAIST Research Series ((KAISTRS))

Abstract

Machine learning is a field of computer science specifically aimed at a challenging goal, quite clearly illustrated by Samuel in 1959, stating that machine learning is that discipline that “gives computers the ability to learn without being explicitly programmed” [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Phil, Too Big to Ignore: The Business Case for Big Data (Wiley, 2013), p. 89. ISBN 978-1-118-63817-0

    Google Scholar 

  2. M.N. Wernick, Y. Yang, J.G. Brankov, G. Yourganov, S.C. Strother, Machine Learning in Medical Imaging, IEEE Sig. Process. Mag. 27(4), 25–38 (2010)

    Google Scholar 

  3. H. Mannila, Data Mining: Machine Learning, Statistics, And Databases. International Conference. Scientific and Statistical Database Management IEEE Computer Society 1996

    Google Scholar 

  4. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn. (Prentice Hall, New Jersey, 1995). ISBN 978-0137903955 (2003)

    Google Scholar 

  5. G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules, in Knowledge Discovery in Databases, ed. by Gregory Piatetsky-Shapiro, William J. Frawley (AAAI/MIT Press, Cambridge, 1991)

    Google Scholar 

  6. R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in Proceedings of the 1993 ACM SIGMOD international conference on Management of data—SIGMOD’93 (1993), p. 207

    Google Scholar 

  7. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, 1999). ISBN 0-13-273350-1

    Google Scholar 

  8. W. Buntine, Theory refinement on Bayesian networks, eds. by B.D.D’ Ambrosio, P. Smets, P.P. Bonissone, in Proceedings of the Seventh Annual Conference on Uncertainty Artificial Intelligence, (Morgan Kaufmann, San Francisco, 1991), pp. 52–60

    Google Scholar 

  9. B. Everitt, Cluster Analysis, (Wiley, Chichester). ISBN 9780470749913

    Google Scholar 

  10. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1, pp. 81–106 (Kluwer Academic Publishers, Dordrecht, 1986)

    Google Scholar 

  11. G. Ian, B. Yoshua, C. Aaron, Deep Learning (MIT Press, Cambridge, 2016)

    Google Scholar 

  12. Y. Bengio, Learning deep architectures for AI (pdf). Found. Trends. Mach. Learn 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Bengio, Y. LeCun, G. Hinton, Deep Learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  14. L. De Raedt, A Perspective on Inductive Logic Programming. The Workshop on Current and Future Trends in Logic Programming (Springer LNCS, Shakertown, 1999)

    Google Scholar 

  15. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. PAMI, Spec. Issue. Learn. Deep. Archit. 35, 1798–1828 (2013)

    Article  Google Scholar 

  16. B. Kulis, Metric learning: a survey. Found. Trends. Mach. Learn. (2012)

    Google Scholar 

  17. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Section 16.5. Support Vector Machines. Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007). ISBN 978-0-521-88068-8

    Google Scholar 

  18. M. Melanie, An Introduction to Genetic Algorithms (MIT Press, 1996). ISBN 9780262133166

    Google Scholar 

  19. S. M. Weiss, N. Indurkhya, Rule-based machine learning methods for functional prediction. J. Artif. Intell. Res. 3 (1995)

    Google Scholar 

  20. R. J. Urbanowicz,J. H. Moore, Learning classifier systems: a complete introduction, review, and roadmap. J. Artif. Evol. Appl. 1–25 (2009)

    Google Scholar 

  21. A. Celesti, F. Tusa, M. Villari, A. Puliafito, in How to enhance cloud architectures to enable cross-federation. IEEE 3rd International Conference on Cloud Computing, (Miami, 2010), pp. 337–345. doi:10.1109/CLOUD.2010.46

  22. E. Carlini, M. Coppola, P. Dazzi, L. Ricci, G. Righetti Cloud federations in contrail, in Proceedings of Euro-Par 2011: Parallel Processing Workshops, 7155, ed. by Alexander Mea (Springer, Heidelberg, 2012), pp. 159–168

    Google Scholar 

  23. B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clayman, E. Levy, A. Maraschini, P. Massonet, H. Muñoz, G. Toffetti, Reservoir - When one cloud is not enough. Computer 44(3), 44–51 (2011)

    Article  Google Scholar 

  24. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees (CRC Press, New York, 1999)

    MATH  Google Scholar 

  25. C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, M.A. Kozuch, Heterogeneity and dynamicity of clouds at scale: Google trace analysis, in ACM Symposium on Cloud Computing (SoCC) (CA, USA, San Jose, 2012)

    Book  Google Scholar 

  26. B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, C. R. Das, Modeling and synthesizing task placement constraints in google compute clusters, in Proceedings of the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 3

    Google Scholar 

  27. E. Brandstatter, G. Gigerenzer, R. Hertwig, The priority heuristic: making choices without trade-offs. Psychol. Rev. 113(2), 409 (2006)

    Article  Google Scholar 

  28. G. F. Anastasi, P. Cassarà, P. Dazzi, A. Gotta, M. Mordacchini and A. Passarella, A Hybrid Cross-Entropy Cognitive-Based Algorithm for Resource Allocation in Cloud Environments, 2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems, (London, 2014), pp. 11–20. doi:10.1109/SASO.2014.13

  29. R.Y. Rubinstein, D.P. Kroese, The Cross-Entropy Method: A Unified Approach To Combinatorial Optimization, Monte–Carlo Simulation And Machine Learning (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  30. J.R. Anderson, C. Lebiere, The Atomic Components Of Thought (Lawrence Erlbaum Inc., Publisher, 1998)

    Google Scholar 

  31. M. Drechsler, K. Katsikopoulos, G. Gigerenzer, Axiomatizing bounded rationality: the priority heuristic, Theor. Decis. 1–14 (2011)

    Google Scholar 

  32. E. Brandstatter, M. Gussmack, The cognitive processes underlying risky choice. Journal of Behavioral Decision Making 26(2), 185–197 (2013)

    Article  Google Scholar 

  33. M. Conti, M. Mordacchini, A. Passarella, Design and performance evaluation of data dissemination systems for opportunistic networks based on cognitive heuristics, ACM Trans. Auton. Adapt. Syst. 8(3), 12:1–12:32 (2013)

    Google Scholar 

  34. J.N. Marewski, W. Gaissmaier, L.J. Schooler, D.G. Goldstein, G. Gigerenzer, From recognition to decisions: extending and testing recognition-based models for multialternative inference. Psychon. Bull. Rev. 17(3), 287–309 (2010)

    Article  Google Scholar 

  35. T. Cucinotta, G. Anastasi, L. Abeni, Respecting Temporal Constraints in Virtualised Services, in Computer Software and Applications Conference. COMPSAC’09. 33rd Annual IEEE International, vol. 2, pp. 73–78 2009

    Google Scholar 

  36. Z. Zheng, R. Wang, H. Zhong, X. Zhang, An approach for cloud resource scheduling based on Parallel Genetic Algorithm, in 2011 3rd International Conference on Computer Research and Development (ICCRD), vol. 2, pp. 444–447 2011

    Google Scholar 

  37. F. Pop, V. Cristea, N. Bessis, and S. Sotiriadis, Reputation guided genetic scheduling algorithm for independent tasks in inter-clouds environments, in Proceedings of the 2013 27th International Conference on Advanced Information Networking and Applications Workshops, ser. WAINA’13., (IEEE Computer Society, Washington, 2013), pp. 772–776

    Google Scholar 

  38. G. F. Anastasi, E. Carlini, M. Coppola and P. Dazzi, QBROKAGE: A Genetic Approach for QoS Cloud Brokering, 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, 2014, pp. 304–311. doi:10.1109/CLOUD.2014.49

  39. Z. Ye, X. Zhou, A. Bouguettaya, Genetic Algorithm Based QoS-Aware Service Compositions in Cloud Computing, eds by J. Yu, M. Kim, R. Unland In Database Systems for Advanced Applications, ser. Lecture Notes in Computer Science, Vol 6588 (Springer, Heidelberg, 2011) pp. 321–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Hyun Youn .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Youn, CH., Chen, M., Dazzi, P. (2017). Machine-Learning Based Approaches for Cloud Brokering. In: Cloud Broker and Cloudlet for Workflow Scheduling. KAIST Research Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-5071-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5071-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5070-1

  • Online ISBN: 978-981-10-5071-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics