Skip to main content

Detail Modes of Binding Assessed by Bulk and Single Molecular Level Fluorescence, MD Simulation, and Its Temperature Dependence: Coumarin 152 with Human Serum Albumin Revisited

  • Chapter
  • First Online:
Selected Topics in Photonics

Part of the book series: IITK Directions ((IITKD,volume 2))

  • 791 Accesses

Abstract

This study describes the effect of temperature on binding parameters as well as mode of binding between coumarin 152 (C152) and human serum albumin (HSA). Site marker competitive experiment, Förster resonance energy transfer (FRET), and molecular docking study show that C152 binds to the digitoxin binding site in domain III of HSA. The binding constant calculated at the single molecular level experiment matches well with the ensemble average measurement, which indicate that at even low dye concentration the binding reaction proceeds with equal probability. Further, FRET and molecular dynamic simulation confirm that the binding location of C152 is independent on temperature (278 K to 323 K). It has been revealed that the binding affinity of C152 to HSA was almost unaffected until 298 K; afterward, it decreases continuously on increasing temperature forming two distinct regions. Thermodynamic parameters for association indicate that strong electrostatic and hydrophobic interactions are operational at lower temperature region, whereas hydrogen bonding predominates at higher temperate region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilson MK, Zhou HX (2007) Annu Rev Biophys Bimol Struct 36:21–42

    Article  Google Scholar 

  2. Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S (2010) Anal Bioanal Chem 398:53–66

    Article  Google Scholar 

  3. Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Lie SQ (2016) Int J Mol Sci 17:144(1)–144(34)

    Google Scholar 

  4. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Proc Natl Acad Sci USA 108:13118–13123

    Article  Google Scholar 

  5. Chiu SH, Xie L (2016) J Chem Inf Model 56:1164–1174

    Article  Google Scholar 

  6. Ross PD, Subramanian S (1981) Biochemistry 20:3096–3102

    Article  Google Scholar 

  7. Rahman MH, Maruyama T, Okada T, Yamasaki K, Otagiri M (1993) Biochem Pharmacol 46:1721–1731

    Article  Google Scholar 

  8. Shobini J, Mishra AK, Sandhya K, Chandra N (2001) Spectrochim Acta A 57:1133–1147

    Article  Google Scholar 

  9. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB (2006) J Pharm Biomed Anal 41:393–399

    Article  Google Scholar 

  10. Zhang G, Zhao N, Wang LJ (2011) Luminesc. 131:2716–2724

    Article  Google Scholar 

  11. Yu X, Lu S, Yang Y, Li X, Yi P (2012) Spectrachim Acta A 91:113–117

    Article  Google Scholar 

  12. Magde D, Elson E, Webb WW (1972) Phys Rev Lett 29:705–708

    Article  Google Scholar 

  13. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  14. Bhattacharya B, Srinivas S, Guruprasad L, Samanta A (2009) J Phys Chem B 113:2143–2150

    Article  Google Scholar 

  15. Sengupta B, Acharyya A, Sen P (2016) Phys Chem Chem Phys 18:28548–28555

    Article  Google Scholar 

  16. He XM, Carter DC (1992) Nature 358:209–215

    Article  Google Scholar 

  17. Curry S, Mandelkow H, Brick P, Franks N (1998) Nature Struc Biol 5:827–835

    Google Scholar 

  18. Deepa S, Mishra AK (2005) J Pharm Biomed Anal 38:556–563

    Article  Google Scholar 

  19. Dugiaczyk A, Law S, Dennison OE (1982) Proc Natl Acad Sci USA 79:71–75

    Article  Google Scholar 

  20. Kalkhambkar RG, Kulkarni GM, Kamanavalli CM, Premkumar N, Asdaq SMB, Sun CM (2008) Eur J Med Chem 43:2178–2188

    Article  Google Scholar 

  21. Novo M, Al-Soufi W (2007) 11th international electronic conference on synthetic organic chemistry (ECSOC-11)

    Google Scholar 

  22. Ravi M (1998) Proc Ind Acad Sci USA 110:133–141

    Google Scholar 

  23. Jones G II, Jackson WR, Choi C, Bergmark WR (1985) J Phys Chem 89:294–300

    Article  Google Scholar 

  24. Ponder JW, Case DA (2003) Adv Prot Chem 66:27–85

    Article  Google Scholar 

  25. Case DA, Cheatham T, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods R (2005) J Comput Chem 26:1668–1688

    Google Scholar 

  26. Case DA, Darden, TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  27. Popelier PLA, Aicken FM (2003) ChemPhysChem 4:824–829

    Article  Google Scholar 

  28. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) J Biol Chem 276:22804–22809

    Article  Google Scholar 

  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 16:2785–2791

    Article  Google Scholar 

  30. Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962

    Article  Google Scholar 

  31. Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  Google Scholar 

  32. Wu X, Brooks BR (2003) Chem Phys Lett 381:512–518

    Article  Google Scholar 

  33. Berendsen HJC, Postma JPM, Gunsteren WFV, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  Google Scholar 

  34. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  Google Scholar 

  35. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  Google Scholar 

  36. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  37. Nad S, Kumbhakar M, Pal H (2003) J Phys Chem A 107:4808–4816

    Article  Google Scholar 

  38. Sytnik A, Litvinyuk I (1996) Proc Natl Acad Sci USA 93:12959–12963

    Article  Google Scholar 

  39. Woody RW (1996) Theory of circular dichroism of proteins. In: Fasman GD (ed) Circular dichroism and conformational analysis of biomolecules, Plenum Publishing Corp., New York

    Google Scholar 

  40. Das DK, Das AK, Mandal AK, Mondal T, Bhattacharyya K (2012) Chem Phys Chem 13:1949–1955

    Article  Google Scholar 

Download references

Acknowledgements

RY thanks University Grants Commission, Government of India and BS thanks Council of Scientific and Industrial Research for providing fellowship. This work is financially supported by SERB, DST, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, R., Sengupta, B., Sen, P. (2018). Detail Modes of Binding Assessed by Bulk and Single Molecular Level Fluorescence, MD Simulation, and Its Temperature Dependence: Coumarin 152 with Human Serum Albumin Revisited. In: Pradhan, A., Krishnamurthy, P. (eds) Selected Topics in Photonics. IITK Directions, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-5010-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5010-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5009-1

  • Online ISBN: 978-981-10-5010-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics