Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 322 Accesses

Abstract

Based on its remarkable mechanical, tribological and chemical properties, graphene is positioned as a material with great potential for countless applications in the future—especially for high strength, anti-wear and corrosion protection applications at the nanoscale. With this in mind, one of the possible applications for graphene could be as an ultrathin protective overcoat for commercial hard disk media. The advantage of using an atomically-thin overcoat of graphene is that it would lead to a drastic reduction in the head-media spacing and dramatically increase the areal density of hard disk drives. This chapter explores the use of single-layer graphene as a possible hard disk media overcoat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  2. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752 (2009)

    Article  Google Scholar 

  3. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  Google Scholar 

  4. E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273 (2012)

    Article  Google Scholar 

  5. N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: an emerging electronic material. Adv. Mater. 24, 5782 (2012)

    Article  Google Scholar 

  6. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)

    Article  Google Scholar 

  7. D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, A.V. Sumant, Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118 (2015)

    Article  Google Scholar 

  8. P. Egberts, G.H. Han, X.Z. Liu, A.T.C. Johnson, R.W. Carpick, Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition. ACS Nano 8, 5010 (2014)

    Article  Google Scholar 

  9. Y.J. Shin, R. Stromberg, R. Nay, H. Huang, A.T.S. Wee, H. Yang, C.S. Bhatia, Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49, 4070 (2011)

    Article  Google Scholar 

  10. O. Leenaerts, B. Partoens, F.M. Peeters, Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys. Rev. B 79, 235440 (2009)

    Article  Google Scholar 

  11. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458 (2008)

    Article  Google Scholar 

  12. R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P.M. Ajayan, M. Majumder, Protecting copper from electrochemical degradation by graphene coating. Carbon 50, 4040 (2012)

    Google Scholar 

  13. S.H. Vemuri, P.S. Chung, R.L. Smith, N.-E. Lee, L.T. Biegler, M.S. Jhon, Head-disk interface design in magnetic data storage. J. Appl. Phys. 111, 07B721 (2012)

    Article  Google Scholar 

  14. NUS Graphene Centre Joint graphene research to boost data storage [Online] (2013). http://news.nus.edu.sg/highlights/6946-joint-graphene-research-to-boost-data-storage. Accessed 11 Aug 2015

  15. B.A. Gurney, E.E. Marinero, S. Pisana, Magnetic devices and magnetic media with graphene overcoat. U.S. Patent Application Publication No. US 2011/0151278 A1, June 23, 2011

    Google Scholar 

  16. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2d crystals. Mater. Today 15, 564 (2012)

    Article  Google Scholar 

  17. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009)

    Article  Google Scholar 

  18. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  19. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Jueyuan Yeo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yeo, R.J. (2017). Graphene as a Protective Overcoat for Hard Disk Media. In: Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4882-1_7

Download citation

Publish with us

Policies and ethics