Skip to main content

Wear-Durable Protective Overcoats for Functional Tape Heads

  • Chapter
  • First Online:
Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording

Part of the book series: Springer Theses ((Springer Theses))

  • 306 Accesses

Abstract

Pole-tip recession (PTR) in magnetic tape heads is one of the major challenges faced in magnetic tape recording, which causes an increase in the magnetic spacing. In addition, tribo-electrochemical reactions can also occur through direct contact between the read/write elements and the tape material, resulting in the formation of metallic deposits. Hence, the application of an ultrathin, wear durable, electrically insulating and chemically inert overcoat on the tape-bearing surface of the head is one possible way to alleviate the issues of PTR and tribo-chemical interactions. In this chapter, the feasibility of ultrathin bi-layer SiNx/C overcoats for functional tape heads is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.E. Spada, D.F. Paul, J.S. Hammond, Application of surface analytical techniques for understanding deposit formation on magnetic tape recording head surfaces. Microsc. Microanal. 18, 874 (2012)

    Article  Google Scholar 

  2. W.W. Scott, B. Bhushan, A.V. Lakshmikumaran, Ultrathin diamond-like carbon coatings used for reduction of pole tip recession in magnetic tape heads. J. Appl. Phys. 87, 6182 (2000)

    Article  Google Scholar 

  3. G.S.A.M. Theunissen, Wear coatings for magnetic thin film magnetic recording heads. Tribol. Int. 31, 519 (1998)

    Article  Google Scholar 

  4. R.G. Biskeborn, W.S. Czarnecki, G.M. Decad, R.E. Fontana, I.E. Iben, J. Liang, C. Lo, L. Randall, P. Rice, A. Ting, T. Topuria, (Invited) linear magnetic tape heads and contact recording. ECS Trans. 50, 19 (2013)

    Article  Google Scholar 

  5. B. Bhushan, B.K. Gupta, R. Sundaram, S. Dey, S. Anders, A. Anders, I.G. Brown, P.D. Reader, Development of hard carbon coatings for thin-film tape heads. IEEE Trans. Magn. 31, 2976 (1995)

    Article  Google Scholar 

  6. B. Shi, J. L. Sullivan, S. O. Saied, A study of thin coating wear in high data density tape heads. J. ASTM Int. 5, JAI101192 (2008)

    Google Scholar 

  7. E. Sourty, J.L. Sullivan, M.D. Bijker, Chromium oxide coatings applied to magnetic tape heads for improved wear resistance. Tribol. Int. 36, 389 (2003)

    Article  Google Scholar 

  8. E. Rismani, S.K. Sinha, S. Tripathy, H. Yang, C.S. Bhatia, Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings. J. Phys. D Appl. Phys. 44, 115502 (2011)

    Article  Google Scholar 

  9. E. Rismani, R. Yeo, S.K. Sinha, H. Yang, C.S. Bhatia, Developing an (Al, Ti)N (x) C (y) interlayer to improve the durability of the ta-C coating on magnetic recording heads. Tribol. Lett. 50, 233 (2013)

    Article  Google Scholar 

  10. E. Rismani, S.K. Sinha, H. Yang, C.S. Bhatia, Effect of pretreatment of Si interlayer by energetic C+ ions on the improved nanotribological properties of magnetic head overcoat. J. Appl. Phys. 111, 084902 (2012)

    Article  Google Scholar 

  11. G.W. Brock, D. Conolly, W.S. Czarnecki, Contact Recording on Bidirectional Thin-Film Tape Head Structures, in Advances in Information Storage Systems, vol. 6, B. Bhushan, ed., 1st ed. (World Scientific Publishing, Singapore, 1995), pp. 373–384

    Google Scholar 

  12. E. Rismani, R. Yeo, H. Mirabolghasemi, W.M. Kwek, H. Yang, C.S. Bhatia, An ultrathin multilayer TiN/SiN wear resistant coating for advanced magnetic tape drive heads. Thin Solid Films 556, 354 (2014)

    Article  Google Scholar 

  13. S.I. Raider, R. Flitsch, J.A. Aboaf, W.A. Pliskin, Surface oxidation of silicon nitride films. J. Electrochem. Soc. 123, 560 (1976)

    Article  Google Scholar 

  14. B. Shi, J.L. Sullivan, M.A. Wild, S.O. Saied, Study of generation mechanism of three-body particles in linear tape recording. J. Tribol. 127, 155 (2005)

    Article  Google Scholar 

  15. E. Sourty, M. Wild, J.L. Sullivan, Pole tip recession and staining at the head to tape interface of linear tape recording systems. Wear 252, 276 (2002)

    Article  Google Scholar 

  16. Y. Wu, F.E. Talke, Design of a head-tape interface for ultra low flying. IEEE Trans. Magn. 32, 160 (1996)

    Article  Google Scholar 

  17. N. Dwivedi, S. Kumar, J.D. Carey, R.K. Tripathi, H.K. Malik, M.K. Dalai, Influence of silver incorporation on the structural and electrical properties of diamond-like carbon thin films. ACS Appl. Mater. Interfaces 5, 2725 (2013)

    Article  Google Scholar 

  18. N. Dwivedi, S. Kumar, R.K. Tripathi, J.D. Carey, H.K. Malik, M.K. Dalai, Structural and electronic characterization of nanocrystalline diamond like carbon thin films. ACS Appl. Mater. Interfaces 4, 5309 (2012)

    Article  Google Scholar 

  19. H.S. Zhang, K. Komvopoulos, Surface modification of magnetic recording media by filtered cathodic vacuum arc. J. Appl. Phys. 106, 093504 (2009)

    Article  Google Scholar 

  20. P.S. Goohpattader, N. Dwivedi, E. Rismani-Yazdi, N. Satyanarayana, R.J. Yeo, S. Kundu, C.S. Bhatia, Probing the role of C+ ion energy, thickness and graded structure on the functional and microstructural characteristics of ultrathin carbon films (<2 nm). Tribol. Int. 81, 73 (2015)

    Article  Google Scholar 

  21. N. Dwivedi, S. Kumar, J.D. Carey, H.K. Malik, Govind, Photoconductivity and characterization of nitrogen incorporated hydrogenated amorphous carbon thin films. J. Appl. Phys. 112, 113706 (2012)

    Google Scholar 

  22. R.J. Yeo, E. Rismani, N. Dwivedi, D.J. Blackwood, H.R. Tan, Z. Zhang, S. Tripathy, C.S. Bhatia, Bi-level surface modification of hard disk media by carbon using filtered cathodic vacuum arc: reduced overcoat thickness without reduced corrosion performance. Diam. Relat. Mater. 44, 100 (2014)

    Article  Google Scholar 

  23. R.J. Yeo, N. Dwivedi, E. Rismani, N. Satyanarayana, S. Kundu, P.S. Goohpattader, H.R. Tan, N. Srinivasan, B. Druz, S. Tripathy, C.S. Bhatia, Enhanced tribological, corrosion, and microstructural properties of an ultrathin (< 2 nm) silicon nitride/carbon bilayer overcoat for high density magnetic storage. ACS Appl. Mater. Interfaces 6, 9376 (2014)

    Article  Google Scholar 

  24. E. Rismani, M.A. Samad, S.K. Sinha, R. Yeo, H. Yang, C.S. Bhatia, Ultrathin Si/C graded layer to improve tribological properties of Co magnetic films. Appl. Phys. Lett. 101, 191601 (2012)

    Article  Google Scholar 

  25. K.H. Ernst, J. Patscheider, R. Hauert, M. Tobler, XPS study of the a-C:H/Al2O3 interface. Surf. Interface Anal. 21, 32 (1994)

    Article  Google Scholar 

  26. T. Peng, Z. Kou, H. Wu, S. Mu, Graphene from amorphous titanium carbide by chlorination under 200[deg]C and atmospheric pressures. Sci. Rep. 4, 5494 (2014)

    Article  Google Scholar 

  27. S. Zhang, X.L. Bui, J. Jiang, X. Li, Microstructure and tribological properties of magnetron sputtered nc-TiC/a-C nanocomposite. Surf. Coat. Technol. 198, 206 (2005)

    Article  Google Scholar 

  28. N. Dwivedi, E. Rismani-Yazdi, R.J. Yeo, P.S. Goohpattader, N. Satyanarayana, N. Srinivasan, B. Druz, S. Tripathy, C.S. Bhatia, Probing the Role of an atomically thin SiNx interlayer on the structure of ultrathin carbon films. Sci. Rep. 4, 5021 (2014)

    Article  Google Scholar 

  29. P. Bunnak, Y. Gong, S. Limsuwan, A. Pokaipisit, P. Limsuwan, Chemical bonding in composite SiNx/diamond-like carbon films prepared by filter cathodic arc deposition of graphite incorporated with radio frequency sputtering of silicon nitride. Jpn. J. Appl. Phys. 52, 095501 (2013)

    Article  Google Scholar 

  30. M. Matsuoka, S. Isotani, W. Sucasaire, L.S. Zambom, K. Ogata, Chemical bonding and composition of silicon nitride films prepared by inductively coupled plasma chemical vapor deposition. Surf. Coat. Technol. 204, 2923 (2010)

    Article  Google Scholar 

  31. Y. Fu, H. Du, S. Zhang, S.E. Ong, Effects of silicon nitride interlayer on phase transformation and adhesion of TiNi films. Thin Solid Films 476, 352 (2005)

    Article  Google Scholar 

  32. N. Hellgren, J. Guo, Y. Luo, C. SÃ¥the, A. Agui, S. Kashtanov, J. Nordgren, H. Ã…gren, J.-E. Sundgren, Electronic structure of carbon nitride thin films studied by X-ray spectroscopy techniques. Thin Solid Films 471, 19 (2005)

    Article  Google Scholar 

  33. R. McCann, S.S. Roy, P. Papakonstantinou, M.F. Bain, H.S. Gamble, J.A. McLaughlin, Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing. Thin Solid Films 482, 34 (2005)

    Article  Google Scholar 

  34. R. Bertoncello, A. Casagrande, M. Casarin, A. Glisenti, E. Lanzoni, L. Mirenghi, E. Tondello, TiN, TiC and Ti(C, N) film characterization and its relationship to tribological behaviour. Surf. Interface Anal. 18, 525 (1992)

    Article  Google Scholar 

  35. H. Yan, W.R. Cannon, D.J. Shanefield, Evolution of carbon during burnout and sintering of tape-cast aluminum nitride. J. Am. Ceram. Soc. 76, 166 (1993)

    Article  Google Scholar 

  36. X.B. Yan, T. Xu, G. Chen, S.R. Yang, H.W. Liu, Q.J. Xue, Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J. Phys. D Appl. Phys. 37, 907 (2004)

    Article  Google Scholar 

  37. L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, Charge transfer in transition metal carbides and related compounds studied by ESCA. J. Phys. Chem. Solids 30, 1835 (1969)

    Article  Google Scholar 

  38. A. Schüler, P. Oelhafen, In situ core-level and valence-band photoelectron spectroscopy of reactively sputtered titanium aluminum nitride films. Phys. Rev. B 63, 115413 (2001)

    Google Scholar 

  39. I. Strydom, S. Hofmann, The contribution of characteristic energy losses in the core-level X-ray photoelectron spectroscopy peaks of TiN and (Ti, Al)N studied by electron energy loss spectroscopy and X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 56, 85 (1991)

    Google Scholar 

  40. Y. Liu, T.P. Chen, P. Zhao, S. Zhang, S. Fung, Y.Q. Fu, Memory effect of Al-rich AlN films synthesized with rf magnetron sputtering. Appl. Phys. Lett. 87, 033112 (2005)

    Article  Google Scholar 

  41. P.J. Matsuo, T.E.F.M. Standaert, S.D. Allen, G.S. Oehrlein, T.J. Dalton, Characterization of Al, Cu, and TiN surface cleaning following a low-K dielectric etch. J. Vac. Sci. Technol., B 17, 1435 (1999)

    Article  Google Scholar 

  42. Data Interchange on 12.7 nm 384-Track Magnetic Tape Cartridges—Ultrium-1 Format, ECMA Standard 319, 2001

    Google Scholar 

  43. P. Poorman, The effect of tape overwrap angle and head radius on head/tape spacing and contact pressure in linear tape recording. Tribol. Int. 31, 449 (1998)

    Article  Google Scholar 

  44. S. Tan, F.E. Talke, Numerical and experimental investigations of the head/tape interface in a digital linear tape drive. J. Tribol. 123, 343 (2000)

    Article  Google Scholar 

  45. R.L. Wallace, The reproduction of magnetically recorded signals. Bell Syst. Technol. J. 30, 1145 (1951)

    Article  Google Scholar 

  46. E. Rismani, S.K. Sinha, H. Yang, S. Tripathy, C.S. Bhatia, Development of a ta-C wear resistant coating with composite interlayer for recording heads of magnetic tape drives. Tribol. Lett. 46, 221 (2012)

    Article  Google Scholar 

  47. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B: Condens. Matter 64, 075414 (2001)

    Google Scholar 

  48. N. Dwivedi, R.J. Yeo, P.S. Goohpattader, N. Satyanarayana, S. Tripathy, C.S. Bhatia, Enhanced characteristics of pulsed DC sputtered ultrathin (<2 nm) amorphous carbon overcoats on hard disk magnetic media. Diam. Relat. Mater. 51, 14 (2015)

    Article  Google Scholar 

  49. N. Wang, K. Komvopoulos, The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition. J. Mater. Res. 28, 2124 (2013)

    Article  Google Scholar 

  50. R. Konicek, D.S. Grierson, A.V. Sumant, T.A. Friedmann, J.P. Sullivan, P.U.P.A. Gilbert, W.G. Sawyer, R.W. Carpick, Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, 155448 (2012)

    Article  Google Scholar 

  51. A. Voevodin, A.W. Phelps, J.S. Zabinski, M.S. Donley, Friction induced phase transformation of pulsed laser deposited diamond-like carbon. Diam. Relat. Mater. 5, 1264 (1998)

    Article  Google Scholar 

  52. N. Dwivedi, R.J. Yeo, Z. Zhang, C. Dhand, S. Tripathy, C.S. Bhatia, Interface engineering and controlling the friction and wear of ultrathin carbon films: high sp3 versus high sp2 carbons. Adv. Funct. Mater. 26, 1526 (2016)

    Article  Google Scholar 

  53. N.W. Khun, E. Liu, Influence of carbon sputtering power on structure, corrosion resistance, adhesion strength and wear resistance of platinum/ruthenium/nitrogen doped diamond-like carbon thin films. Surf. Coat. Technol. 205, 853 (2010)

    Article  Google Scholar 

  54. C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu, J. Robertson, Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diam. Relat. Mater. 13, 1416 (2004)

    Article  Google Scholar 

  55. P. Lemoine, J.F. Zhao, J.P. Quinn, A.A. Ogwu, J.A. McLaughlin, P. Maguire, F. McGinnity, X. Shi, Naniondentation and scratch resistance testing on magnetic tape heads coated with ultra-thin amorphous carbon layers. Wear 244, 79 (2000)

    Article  Google Scholar 

  56. R.J. Yeo, N. Dwivedi, L. Zhang, Z. Zhang, C.Y.H. Lim, S. Tripathy, C.S. Bhatia, Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: the role of enhanced interfacial bonding. J. Appl. Phys. 117, 045310 (2015)

    Article  Google Scholar 

  57. R.J. Yeo, N. Dwivedi, S. Tripathy, C.S. Bhatia, Excellent wear life of silicon nitride/tetrahedral amorphous carbon bilayer overcoat on functional tape heads. Appl. Phys. Lett. 106, 091604 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Jueyuan Yeo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yeo, R.J. (2017). Wear-Durable Protective Overcoats for Functional Tape Heads. In: Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4882-1_6

Download citation

Publish with us

Policies and ethics