Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 334 Accesses

Abstract

Reduction of the protective carbon overcoat (COC) thickness down to ≤2 nm on hard disk media is essential based on current perpendicular magnetic recording technology, in order to achieve areal densities of >1 Tb/in2. Because of its potential to achieve comparably higher sp3 carbon bonding and a denser carbon network, hence better film coverage at lower overcoat thicknesses, the filtered cathodic vacuum arc (FCVA) technique is a promising option for COC fabrication on future media. In addition, the ability to tune the energy of the incoming C+ ions is advantageous for optimizing the functional properties of the COC. In this chapter, the effects of C+ ion energy, thickness and the extent of atomic mixing on the microstructural and functional properties of ultrathin COCs are discussed, and how the FCVA process can be optimized to achieve the most desirable functional properties for the media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Samad, E. Rismani, H. Yang, S.K. Sinha, C.S. Bhatia, Overcoat free magnetic media for lower magnetic spacing and improved tribological properties for higher areal densities. Tribol. Lett. 43, 247 (2011)

    Article  Google Scholar 

  2. M.A. Samad, S.M. Xiong, L. Pan, H. Yang, S.K. Sinha, D.B. Bogy, C.S. Bhatia, A novel approach of carbon embedding in magnetic media for future head/disk interface. IEEE Trans. Magn. 48, 1807 (2012)

    Article  Google Scholar 

  3. M. Abdul Samad, E. Rismani, W.M. Kwek, C.S. Bhatia, Energy gradient carbon embedding in the magnetic media for improved tribological performance. Surf. Coat. Technol. 242, 152 (2014)

    Google Scholar 

  4. S.N. Piramanayagam, C.T. Chong, Developments in data storage: materials perspective, 1st edn. (Wiley, New Jersey, NJ, USA, 2012)

    Google Scholar 

  5. E. Rismani, S.K. Sinha, S. Tripathy, H. Yang, C.S. Bhatia, Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings. J. Phys. D Appl. Phys. 44, 115502 (2011)

    Article  Google Scholar 

  6. R.J. Yeo, N. Dwivedi, L. Zhang, Z. Zhang, C.Y.H. Lim, S. Tripathy, C.S. Bhatia, Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: the role of enhanced interfacial bonding. J. Appl. Phys. 117, 045310 (2015)

    Article  Google Scholar 

  7. J. Robertson, Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001)

    Article  Google Scholar 

  8. G.M. Pharr, D.L. Callahan, S.D. McAdams, T.Y. Tsui, S. Anders, A. Anders, J.W. Ager, I.G. Brown, C.S. Bhatia, S.R.P. Silva, J. Robertson, Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779 (1996)

    Article  Google Scholar 

  9. D.G. Enos, L.L. Scribner, The potentiodynamic polarization scan. Solartron Analytical, Hampshire, UK, Technical Report 33, Jan 1997

    Google Scholar 

  10. Y. Wang, H. Li, L. Ji, F. Zhao, X. Liu, Q. Kong, Y. Wang, W. Quan, H. Zhou, J. Chen, The effect of duty cycle on the microstructure and properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering. J. Phys. D Appl. Phys. 43, 505401 (2010)

    Article  Google Scholar 

  11. S. Anders, A. Anders, I.G. Brown, B. Wei, K. Komvopoulos, J.W. Ager Iii, K.M. Yu, Effect of vacuum arc deposition parameters on the properties of amorphous carbon thin films. Surf. Coat. Technol. 68–69, 388 (1994)

    Google Scholar 

  12. N. Dwivedi, N. Satyanarayana, R.J. Yeo, H. Xu, K.P. Loh, S. Tripathy, C.S. Bhatia, Ultrathin carbon with interspersed graphene/fullerene-like nanostructures: a durable protective overcoat for high density magnetic storage. Sci. Rep. 5, 11607 (2015)

    Article  Google Scholar 

  13. D.J. Li, M.U. Guruz, C.S. Bhatia, Y.-W. Chung, Ultrathin CNx overcoats for 1 Tb/in2 hard disk drive systems. Appl. Phys. Lett. 81, 1113 (2002)

    Article  Google Scholar 

  14. N.W. Khun, E. Liu, M.D. Krishna, Structure, adhesive strength and electrochemical performance of nitrogen doped diamond-like carbon thin films deposited via DC magnetron sputtering. J. Nanosci. Nanotechnol. 10, 4752 (2010)

    Article  Google Scholar 

  15. C. Gao, Y.C. Lee, J. Chao, M. Russak, Dip-coating of ultra-thin liquid lubricant and its control for thin-film magnetic hard disks. IEEE Trans. Magn. 31, 2982 (1995)

    Article  Google Scholar 

  16. N.W. Khun, E. Liu, Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank’s solution. Mater. Sci. Eng. C 31, 1539 (2011)

    Article  Google Scholar 

  17. H.S. Zhang, K. Komvopoulos, Surface modification of magnetic recording media by filtered cathodic vacuum arc. J. Appl. Phys. 106, 093504 (2009)

    Article  Google Scholar 

  18. H.-S. Zhang, K. Komvopoulos, Synthesis of ultrathin carbon films by direct current filtered cathodic vacuum arc. J. Appl. Phys. 105, 083305 (2009)

    Article  Google Scholar 

  19. T.L. Barr, An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem. 82, 1801 (1978)

    Article  Google Scholar 

  20. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717 (2011)

    Article  Google Scholar 

  21. D. Briggs, M.P. Seah, Practical surface analysis by auger and X-ray photoelectron spectroscopy, 1st edn. (Wiley, Chichester, United Kingdom, 1983)

    Google Scholar 

  22. N.S. McIntyre, M.G. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47, 2208 (1975)

    Article  Google Scholar 

  23. V.I. Nefedov, D. Gati, B.F. Dzhurinskii, N.P. Sergushin, Y.V. Salyn, X-ray electron study of oxides of elements. Zh. Neorg. Khim. 20, 2307 (1973)

    Google Scholar 

  24. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, 1st edn. (Perkin-Elmer Corp. (Physical Electronics), Minnesota, 1979)

    Google Scholar 

  25. P. Marcus, J.M. Grimal, The anodic dissolution and passivation of NiCrFe alloys studied by ESCA. Corros. Sci. 33, 805 (1992)

    Article  Google Scholar 

  26. B. Stypula, J. Stoch, The characterization of passive films on chromium electrodes by XPS. Corros. Sci. 36, 2159 (1994)

    Article  Google Scholar 

  27. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A 362, 2477 (2004)

    Article  Google Scholar 

  28. P.M. Jones, J. Ahner, C.L. Platt, H. Tang, J. Hohlfeld, Understanding disk carbon loss kinetics for heat assisted magnetic recording. IEEE Trans. Magn. 50, 144 (2014)

    Article  Google Scholar 

  29. N. Wang, K. Komvopoulos, F. Rose, B. Marchon, Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing. J. Appl. Phys. 113, 083517 (2013)

    Article  Google Scholar 

  30. A.C. Ferrari, Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180–181, 190 (2004)

    Article  Google Scholar 

  31. C.S. Bhatia, S. Anders, K. Bobb, R. Hsiao, I.G. Brown, D.B. Bogy, Ultra-thin overcoats for the head/disk interface tribology. J. Tribol. Trans. ASME 120, 795 (1998)

    Article  Google Scholar 

  32. B.K. Pathem, X.C. Guo, F. Rose, N. Wang, K. Komvopoulos, E. Schreck, B. Marchon, Carbon overcoat oxidation in heat-assisted magnetic recording. IEEE Trans. Magn. 49, 3721 (2013)

    Article  Google Scholar 

  33. S. Kundu, N. Dwivedi, N. Satyanarayana, R.J. Yeo, J. Ahner, P.M. Jones, C.S. Bhatia, Probing the role of carbon microstructure on the thermal stability and performance of ultrathin (<2 nm) overcoats on L10 FePt media for heat-assisted magnetic recording. ACS Appl. Mater. Interfaces. 7, 158 (2014)

    Article  Google Scholar 

  34. P.S. Goohpattader, N. Dwivedi, E. Rismani-Yazdi, N. Satyanarayana, R.J. Yeo, S. Kundu, C.S. Bhatia, Probing the role of C+ ion energy, thickness and graded structure on the functional and microstructural characteristics of ultrathin carbon films (<2 nm). Tribol. Int. 81, 73 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Jueyuan Yeo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yeo, R.J. (2017). Optimization of Ultrathin Carbon Overcoats on Hard Disk Media. In: Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4882-1_4

Download citation

Publish with us

Policies and ethics