Skip to main content

Application of Nanotechnology in the Environment Biotechnology

  • Chapter
  • First Online:
Advances in Environmental Biotechnology

Abstract

With the increasing industrialization and urbanization, the environment is getting polluted. Conventional techniques such as filtration, centrifugation and biological treatment are expensive and not efficient one. Therefore, there is a need for the development of recent and efficient techniques for environmental monitoring and treatment. Nanotechnology is the solution to the abovesaid problems. Nanoparticles, nanomembranes, nanofilters, and nanocatalysts have been developed for wastewater treatment. These have smaller size (1–100 nm) and higher surface area to volume ratio. Due to these properties, they provide more reaction surface which results in increased efficiency and selectivity. With the some issues solved, nanotechnology will answer all the environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Campos EV, de Oliveira JL, da Silva CM, Pascoli M, Pasquoto T, Lima R, Abhilash PC, Fraceto LF (2015) Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Report 5:13809. doi:10.1038/srep13809

    Article  Google Scholar 

  • Cortalezzi MM, Rose J, Wells GF, Bottero JY, Barron AR, Wiesner MR (2003) Ceramic membrane derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. J Membr Sci 227:207–217

    Article  CAS  Google Scholar 

  • Cortalezzi MM, Colvin V, Wiesner MR (2005) Controlling submicron-particle template morphology effect of solvent chemistry. J Colloid Interface Sci 283:366–372

    Article  CAS  Google Scholar 

  • Cui Y, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39:1366–1377

    Article  CAS  Google Scholar 

  • Ding C, Cheng W, Wang X, Wu ZY, Sun Y, Chen C, Wang X, Yu SH (2016) Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: a spectroscopic and modeling approach. J Hazard Mater 313:253–261. doi:10.1016/j.jhazmat.2016.04.002. Epub 2016 Apr 14

  • Dizaj SM, Lotfipour F, Jalali MB, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Elliott DW, Zhang W (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    Article  CAS  Google Scholar 

  • Environmental Defense Fund (2006) The health risks of burning coal for energy, Report. http://www.edf.org/climate/remaking-energy

  • Fan L, Song J, Bai W, Wang S, Zeng M, Li X, Zhou Y, Li H, Lu H (2016) Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil. Environ Res 145:18–25. doi:10.1016/j.envres.2015.09.024. Epub 2015 Dec 6

  • Feldman RA, Harris DW (2000) Beyond the human genome: high-throughput, fine scale, molecular dissection of Earth’s microbial diversity. J Clin Ligand Assay 23(4):256–261

    Google Scholar 

  • Filipponi L, Sutherland D (2007) Applications of Nanotechnology: environment. FP6 Project NANOCAP (acronym for “Nanotechnology Capacity Building NGOs”)

    Google Scholar 

  • Formoso P, Muzzalupo R, Tavano L, Filpo GD, Nicoletta FP (2016) Nanotechnology for the environment and medicine. J Colloid Interface Sci 475:184–191. doi:10.1016/j.jcis.2016.05.001. [Epub ahead of print]

  • Gemming S, Seifert G (2007) Catalysts on the edge. Nature 2:21–22

    CAS  Google Scholar 

  • Gu H, Ho PL, Tsang KWT, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant Enterococci and other gram-positive bacteria at ultralow concentration. J Am Chem Soc 125(51):15702–15703. doi:10.1021/ja0359310

    Article  CAS  Google Scholar 

  • Gu H, Xu K, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 7(9):941–949

    Article  Google Scholar 

  • Guzmán KAD, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environ Sci Technol 40:1401–1407

    Article  Google Scholar 

  • Kamat PV, Huehn R, Nicolaescu R (2002) A sense shoot approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106:788–794

    Article  CAS  Google Scholar 

  • Kanbak-Aksu S, Nahid Hasan M, Hagen WR, Hollmann F, Sordi D, Sheldon RA, Arends IW (2012) Ferritin-supported palladium nanoclusters: selective catalysts for aerobic oxidations in water. Chem Commun (Camb) 48(46):5745–5747. doi: 10.1039/c2cc31401k. Epub 2012 May 3

  • Khan R, Fulekar MH (2016) Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. Mini-Rev Med Chem 16(8):668–675

    Google Scholar 

  • Khezami L, Taha KK, Ghiloufi I, El Mir L (2016) Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxidenanoparticles. Water Sci Technol 73(4):881–889. doi:10.2166/wst.2015.555

    CAS  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotubes, molecular wires as chemical sensors. Sensors 287:622–625

    CAS  Google Scholar 

  • Krantzberg G, Tanik A, doCarmo JSA, Indarto A, Ekda A (2010) Advances in water quality control. Scientific Research Publishing, Irvine

    Google Scholar 

  • Kumari MM, Philip D (2015) Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim Acta A Mol Biomol Spectrosc 135:632–638. doi:10.1016/j.saa.2014.07.037. Epub 2014 Jul 29

  • Mahmoud KA, Abdel-Wahab A, Zourob M (2015) Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode. Water Sci Technol 72(10):1780–1788. doi:10.2166/wst.2015.399

    Article  CAS  Google Scholar 

  • Mohamed A, El-Sayed R, Osman TA, Toprak MS, Muhammed M, Uheida A (2016) Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Sci Report 6:21027. doi:10.1038/srep21027

    Article  Google Scholar 

  • Moretz P (2004) Nanoparticles developed that could clean environment. Temple Times. http://www.temple.edu/temple_times/9–9-04/nanoparticles.html

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122. doi:10.1016/j.advwatres.2012.02.005

    Article  Google Scholar 

  • Oyama T, Aoshima A, Horikoshi S, Hidaka H, Zhao J, Serpone N (2002) Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO2 dispersions under sunlight radiation. Sol Energy 77:525–532

    Article  Google Scholar 

  • Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8(4):20–28

    Article  CAS  Google Scholar 

  • Raman CD, Kanmani S (2016) Textile dye degradation using nano zero valent iron: a review. J Environ Manag 177:341–355. doi:10.1016/j.jenvman.2016.04.034. Epub 2016 Apr 26

  • Roco MC, Williams S, Alivisatos P (1999) Nanotechnology research directions: vision for nanotechnology in the next decade, IWGN workshop report. U.S. National Science and Technology Council, Washington, DC

    Google Scholar 

  • Shao M, Shan Y, Wong N, Lee S (2005) Silicon nanowire sensors for bioanalytical applications: glucose and hydrogen peroxide detection. Adv Funct Mater 15:1478–1482

    Article  CAS  Google Scholar 

  • Shon HK, Phuntsho S, Chaudhary DS, Vigneswaran S, Cho J (2013) Nanofiltration for water and wastewater treatment – a mini review. Drink Water Eng Sci 6:47–53

    Article  CAS  Google Scholar 

  • Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem 105:11439–11446

    Article  CAS  Google Scholar 

  • Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50(8):4459–4467. doi:10.1021/acs.est.6b00058

    Article  CAS  Google Scholar 

  • Theil E (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  • Wang CB, Zhang W (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  • Watlington K (2005) Emerging nanotechnologies for site remediation and wastewater treatment. National Network for Environmental Management Studies Fellow, North Carolina State University

    Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Modi Education Society and Dr. Khushwinder Kumar, Principal, Multani Mal Modi College, Patiala for encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kaur, J., Pathak, T., Singh, A., Kumar, K. (2017). Application of Nanotechnology in the Environment Biotechnology. In: Kumar, R., Sharma, A., Ahluwalia, S. (eds) Advances in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4041-2_9

Download citation

Publish with us

Policies and ethics