Skip to main content

Bioremediation Technologies for the Removal of Pollutants

  • Chapter
  • First Online:
Advances in Environmental Biotechnology

Abstract

Bioremediation technology involves the use of living organisms like microbes and plants to reduce/degrade, eliminate and transform contaminants present in soils, sediments and water. The technology has gained wider acceptance in the recent years because of its potential to remove various organic and inorganic contaminants from various components of the environment. The technology provides an effective treatment of inorganic and organic contaminants under in situ and ex situ conditions by natural means. Potential of microbes and plants both have been exploited to achieve maximum removal/remediation of inorganic and organic contaminants. The biotechnological approaches and genetic engineering strategies have been employed by researchers to improve the efficacy of this technique for achieving complete degradation of contaminants. Enhancement in potential of both plants and microbes for achieving complete remediation of one or more than one pollutant can prove an asset for remediating contaminated sites. The present chapter highlights the role of microbial and phytoremediation in removal of pollutants from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  Google Scholar 

  • Abruscia C, Marquinaa D, Del Amob A, Catalina F (2007) Biodegradation of cinematographic gelatin emulsion by bacteria and filamentous fungi using indirect impedance technique. Int Biodet Biodegr 60:137–114

    Article  CAS  Google Scholar 

  • Agarwal SK (1998) Environmental Biotechnology, 1st edn. APH Publishing Corporation, New Delhi, pp 267–289

    Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresource Technol 79:273–276

    Article  CAS  Google Scholar 

  • Bañuelos G, Terr N, LeDuc DL et al (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Biotechnol 18:213–217

    CAS  Google Scholar 

  • Bizily S, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: Mer B expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci U S A 96:6808–6813

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74:63–67

    Article  CAS  Google Scholar 

  • Bruschi M, Florence G (2006) New Bioremediation technologies to remove heavy metals and radionuclides using Fe (III)-sulfate- and sulfur reducing bacteria. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 35–55

    Google Scholar 

  • de Cássia Miranda R, de Souza CS, de Barros Gomes E, Barros Lovaglio R, Edison Lopes C, de Fátima Vieira de Queiroz Sousa M (2007) Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the state of Pernambuco – Brazil. Braz Arch Biol Technol 50:147–152

    Google Scholar 

  • Chaney RL, Brown SL, Li YM, Angle JS, Stuczynski TI, Daniels WL, Henry CL, Siebelec G, Malik M, Ryan JA, Compton H (2000) Progress in risk assessment for soil metals, and in-situ remediation and phytoextraction of metals from hazardous contaminated soils. USEPA Phytoremediation: State of Science, Boston

    Google Scholar 

  • Chaplain V, Défossez P, Richard G, Tessier D, Roger-Estrade J (2011) Contrasted effects of no-till on bulk density of soil and mechanical resistance. Soil Tillage Res 111:105–114

    Article  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39(24):9377–9390

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Czako M, Feng X, He Y (2005) Genetic modification of wetland grasses for phytoremediation. Z Naturforsch 60:285–291

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Dhir B (2013) Phytoremediation: role of aquatic plants in environmental clean-up. Springer. doi:10.1007/978–81–322-1307-9

    Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:754–781

    Article  CAS  Google Scholar 

  • Didierjean I, Gondet L, Perkins R, Lau SM, Schaller H, O’keefe DP, Werck-reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  CAS  Google Scholar 

  • Dipu S, Kumar AA, Thanga VSG (2011) Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist 31:263–278

    Article  Google Scholar 

  • Dos Santos AB, Cervantes JF, Van Lier BJ (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Biomagn Res Technol 98:2369–2385

    CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997a) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

    Article  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997b) Phytoremediation: a novel approach to an old problem. In: Wise DL (ed) Global environmental biotechnology. Elsevier Science BV, Amsterdam, pp 563–572

    Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzym Microb Technol 7:194–196

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • El Fantroussi S, Belkacemi M, Top EM, Mahillon J, Naveau H, Agathos SN (1999) Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioremediation studies. Environ Sci Technol 33:2992–3001

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1998) A citizen’s guide to phytoremediation. EPA Publication, Washington, DC. 542-F-98-011

    Google Scholar 

  • EPA (Environmental Protection Agency) (1999) Phytoremediation resource guide. EPA Publication, Washington, DC. 542-B-99-003

    Google Scholar 

  • EPA (2003) Annual report: revised draft. Environmental Protection Agency, Accra

    Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  CAS  Google Scholar 

  • Fritsche W, Hofrichter M (2005) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Jördening HJ, Winter J (eds) Environmental biotechnology, concepts and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi: 10.1002/3527604286.ch7

  • Fritsche W, Hofrichter M (2008) Aerobic degradation by microorganisms. In: Rehm HJ, Reed G (eds) Biotechnology set, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim. doi:10.1002/9783527620999.ch6m

    Google Scholar 

  • Fulekar MH, Geetha M, Sharma J (2009) Bioremediation of Trichlorpyr Butoxyethyl Ester (TBEE) in bioreactor using adapted Pseudomonas aeruginosa in scale up process technique. Biol Med 1(3):1–6

    CAS  Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology that uses green plants to remove contaminants from polluted areas. Rev. Environ Sci Health 17:173–188

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res 7:173–180

    Article  CAS  Google Scholar 

  • Gullner G, Kömives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Article  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 24:125–133

    Article  Google Scholar 

  • Horne AJ (2000) Phytoremediation by constructed wetlands. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 13–40

    Google Scholar 

  • Inui H, Shiota N, Motoi Y, Ido Y, Inoue T, Kodama T, Ohkawa Y, Ohkawa H (2001) Metabolism of herbicides and other chemicals in human cytochrome P450 species and in transgenic potato plants co-expressing human CYP1A1, CYP2B6 and CYP2C19. J Pest Sci 26:28–40

    Article  CAS  Google Scholar 

  • Jacobson ME, Chiang SY, Gueriguian L, Weshtholm LR, Pierson J (2003) Transformation kinetics of trinitrotoluene conversion in aquatic plants. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 409–427

    Chapter  Google Scholar 

  • James CA, Strand SE (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20(2):237–241

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Saye H, El Ghachtouli N (2014) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F (eds) Biodegradation – life of science. Intech, Rijeka. ISBN 978-953-51-1154-2

    Google Scholar 

  • Kanade SN, Ade AB, Khilare VC (2012) Malathion degradation by Azospirillum lipoferum Beijerinck. Sci Res Rep 2(1):94–103

    Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftarisa A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase. Biomol Eng 22:121–128

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25:75–84

    Article  CAS  Google Scholar 

  • Klein M, Burla B, MAartinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580:1112–1122

    Article  CAS  Google Scholar 

  • Kramer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  CAS  Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, AJM B, JAC S (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M et al (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  Google Scholar 

  • Li CH, Wong YS, Tam NF (2010) Anaerobic biodegradation of polycyclic aromatic hydro- carbons with amendment of iron(III) in mangrove sediment slurry. Bioresour Technol 101:8083–8092

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Maheshwari R, Singh U, Singh P, Singh N, Jat BL, Rani B (2014) To decontaminate wastewater employing bioremediation technologies. J Adv Sci Res 5(2):7–15

    CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: SC MC, Schnoor J (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 53–58

    Chapter  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Meagher M, Taper M, Jerde C (2002) Recent changes in population distribution: the Pelican bison and the domino effect. In: Anderson RJ, Harmon D (eds) Yellowstone Lake: hotbed of chaos or reservoir of resilience? Proceedings of the 6th biennial scientific conference on the Greater Yellowstone Ecosystem October 8–10, 2001, Mammoth Hot Springs Hotel, Yellowstone National Park, Wyo., and Hancock, Mich.: Yellowstone Center for Resources and the George Wright Society, pp 135–147

    Google Scholar 

  • Mello-Farias PC, Chaves ALS (2008) Biochemical and molecular aspects of toxic metals phytoremediation using transgenic plants. In: Tiznado-Hernandez ME, Troncoso-Rojas R, Rivera-Domínguez MA (eds) Transgenic approach in plant biochemistry and physiology. Research Signpost, Kerala, pp 253–266

    Google Scholar 

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505

    Article  CAS  Google Scholar 

  • Mucha AP, Almeida CMR, Bordalo AA, Vasconcelos MTSD (2010) LMWOA (low molecular weight organic acid) exudation by salt marsh plants: natural variation and response to Cu contamination. Estuar Coast Shelf Sci 88:63–70

    Article  CAS  Google Scholar 

  • Olaniran AO, Pillay D, Pillay B (2006) Biostimulation and bioaugmentation enhances aero- bic biodegradation of dichloroethenes. Chemosphere 63:600–608

    Article  CAS  Google Scholar 

  • Olson PE, Reerdon KF, Pillon-Smith EAH (2003) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation transformation and control of contaminants. Wiley, Hoboken, pp 317–353

    Google Scholar 

  • Pal TK, Bhattacharyya S, Basumajumdar A (2010) Cellular distribution of bioaccumulated toxic heavy metals in Aspergillus niger and Rhizopus arrhizus. Int J Pharma Biol Sci 1:1–6

    CAS  Google Scholar 

  • Pandey B, Fulekar MH (2012) Bioremediation technology: a new horizon for environmental clean-up. Biol Med 4(1):51–59

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • PinakiSar S, Kazy K, D’Souza SF (2004) Radionuclide remediation using a bacterial biosorbent. Int Biodeter Biodegr 54(2–3):193–202

    Google Scholar 

  • Pollard AJ, Dandridge KL, Jhee EM (2000) Ecological genetics and the evolution of trace element hyperaccumulation in plants. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 251–264

    Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson MD, Summers AO, Meagher RB (1996) Mercuric ion reduction and the resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer A gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16(10):925–928

    Article  CAS  Google Scholar 

  • Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for phytoremediation of explosives. Trends Biotechnol 29:73–81

    Article  CAS  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruc NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock MB, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the green liver concept. Pharmacogenetics 4:225–241

    Article  CAS  Google Scholar 

  • Sasek V, Volfova O, Erbanova P, Vyas BRM, Matucha M (1993) Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnol Lett 15:521–526

    Article  CAS  Google Scholar 

  • Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals – using plants to clean-up the environment. Wiley, New York, pp 133–150

    Google Scholar 

  • Seeger M, Cámara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and an- gular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555

    Article  CAS  Google Scholar 

  • Shan HF, Kurtz HD, Freedman DL (2010) Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes. Water Res 44:1317–1328

    Article  CAS  Google Scholar 

  • Sharma J, Fulekar MH (2009) Potential of Citrobacter freundii for bioaccumulation of heavy metal – copper. Biol Med 1(3):7–14

    CAS  Google Scholar 

  • Shiota N, Nagasawa A, Sakaki T, Yabusaki Y, Ohkawa H (1994) Herbicide-resistant plants expressing the fused enzyme between rat cytochrome P4501A1 (CYP1A1) and yeast NADPH-cytochrome P450 reductase. Plant Physiol 106:17–23

    Article  CAS  Google Scholar 

  • Siminszky B, Corbinf T, Warde R, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci U S A 96:1750–1755

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New York

    Book  Google Scholar 

  • Singh D, Fulekar MH (2009) Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor. J Hazard Mater 175:336–343

    Article  CAS  Google Scholar 

  • Singh RP, Dhania G, Sharma PA, Jaiwal K (2006) Biotechnological approaches to improve phytoremediation efficiency for environment contaminants. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 223–258

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  Google Scholar 

  • Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    Article  CAS  Google Scholar 

  • Sriprang R, Hayashi M, Hisayo O, Masahiro T, Kazumasa H, Yoshikatsu M (2003) Enhanced accumulation of Cd by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  Google Scholar 

  • Strong PJ, Burgess JE (2008) Treatment methods for wine-related and distillery wastewaters review. Bioremed J 12:70–87

    Article  CAS  Google Scholar 

  • Surekha Rani M, Vijaya Lakshmi K, Devi SP, Jaya MR, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:26–031

    Google Scholar 

  • Sylvestre M., Macek T, Mackova M (2009) Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 20: 242–247

    Article  CAS  Google Scholar 

  • Taguchi K, Motoyama M, Kudo T (2001) PCB/biphenyl degradation gene cluster in Rhodococcus rhodochrousK37 is different from the well-known bph gene clusters in Rhodococcus sp. P6, RHA1, and TA42. RIKEN Rev 42:23–26

    CAS  Google Scholar 

  • Takeuchi M, Nanba K, Iwamoto H, Nirei H, Kusuda T, Kazaoka O, Owaki M, Furuya K (2005) In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Water Res 39:2438–2444

    Article  CAS  Google Scholar 

  • Thierry L, Armelle B, Karine J (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci 97:4991–4996

    Article  CAS  Google Scholar 

  • Treen-Sears ME, Martin SM, Volesky B (1998) Propagation of Rhiloprzs juvanicus biosorbent. Appld Environ Microbiol 448:137–141

    Google Scholar 

  • Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Article  CAS  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, Le Duc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-y-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) At PCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci 96(12):7110–7115

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation – an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Wang C, Liu ZQ (2007) Foliar uptake of pesticides: present status and future challenge. Pest Biochem Physiol 87:1–8

    Article  CAS  Google Scholar 

  • Wang KS, Huang LC, Lee HS, Chen PY, Chang SH (2008) Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere 72:666–672

    Article  CAS  Google Scholar 

  • White C, Sharman AK, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572–575

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  Google Scholar 

  • Yang X, Jin XF, Feng Y, Islam E (2005a) Molecular mechanisms and genetic bases of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella P (2005b) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  Google Scholar 

  • Zeyaullah M, Atif M, Badrul I, Abdelkafe AS, Sultan P, ElSaady MA, Ali A (2009) Bioremediation: a tool for environmental cleaning. Afr J Microbiol Res 3(6):310–314

    CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Tarun A (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Dhir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dhir, B. (2017). Bioremediation Technologies for the Removal of Pollutants. In: Kumar, R., Sharma, A., Ahluwalia, S. (eds) Advances in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4041-2_5

Download citation

Publish with us

Policies and ethics