Skip to main content

Need for the Advanced Technologies for Wastewater Treatment

  • Chapter
  • First Online:
Advances in Environmental Biotechnology

Abstract

Water is one of the basic needs of a living organism to sustain life on earth. But due to the rapidly increasing population, urbanization, and industrialization, the quality of portable water is depleting. If the wastewater is not treated efficiently, then it generates a number of problems such as malodor and health problems, gives birth to disease-causing agents, etc. Therefore, it is the need of the day to develop some new techniques which are more efficient in treating the wastewater. In this chapter, the use of new techniques such as membrane bioreactor, advanced oxidation techniques and nanotechnology for the treatment of wastewater have been discussed. The nanocomponents such as nanosorbents, nanocatalysts, molecularly imprinted polymers (MIPs), and nanostructured catalytic membranes (NCMs) are the recent techniques which treat wastewater very efficiently. The water recovered after these treatments meet the human consumption criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adham SS, Jacangelo JG, Laine JM (1995) Low-pressure membranes: assessing integrity. J Am Water Works Assoc 87(3):62

    CAS  Google Scholar 

  • Apblett AW, Al-Fadul SM, Chehbouni M, Trad T (2001) Proceedings of the 8th international environmental petroleum consortium

    Google Scholar 

  • Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49:601–610

    Article  CAS  Google Scholar 

  • Campos AFC, Aquino R, Cotta TAPG, Tourinho FA, Depevrot J (2012) Using speciation diagrams to improve synthesis of magnetic nanosorbents for environmental applications. Bull Mater Sci 34(7):1357–1361

    Article  Google Scholar 

  • Caro E, Marcé RM, Borrull F, Cormack PAG, Sherrington DC (2006) Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. Trends Anal Chem 25(2):143–154

    Article  CAS  Google Scholar 

  • Clémenson S, Espuche E, David L, Léonard L (2010) Nanocomposite membranes of polyetherimide nanostructured with palladium particles: processing route, morphology and functional properties. J Membr Sci 361(1–2):167–175

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  • Gunduz O, Yetmez M, Sonmez M, Georgescu M, Alexandrescu L, Ficai A, Ficai D, Andronescu E (2015) Mesoporous materials used in medicine and environmental applications. Curr Top Med Chem 15(15):1501–1515

    Article  CAS  Google Scholar 

  • Hande PE, Samui AB, Kulkarni PS (2015) Highly selective monitoring of metals by using ion-imprinted polymers. Environ Sci Pollut Res Int 22(10):7375–7404. doi:10.1007/s11356-014-3937-x . Epub 2015 Feb 7

    Article  CAS  Google Scholar 

  • Hildebrand H, Mackenzie K, Kopinke FD (2008) Novel nano-catalysts for wastewater treatment. Glob Nest J 10(1):47–53

    Google Scholar 

  • Hongwei B, Zhaoyang L, Darren DS (2012) Hierarchical ZnO nanostructured membrane for multifunctional environmental applications. Colloids Surf A Physicochem Eng Asp 410(20):11–17

    Google Scholar 

  • Hyeok C, Souhail R, Al-Abed D, Dionysiou D (2009) Nanostructured titanium oxide film and membrane-based photocatalysis for water treatment. In: Nanotechnology applications for clean water. William Andrew Publishing, Norwich, pp 39–46

    Google Scholar 

  • Jacangelo JG, Adham SS, Laine JM (1995) Mechanism of Cryptosporidium parvum, Giardia muris, and MS2 virus removal by MF and UF. J Am Water Works Assoc 87(9):107

    CAS  Google Scholar 

  • Jian X, Leonidas B, Dibakar B (2009) Synthesis of nanostructured bimetallic particles in poly ligand functionalized membranes for remediation applications. In: Nanotechnology applications for clean water. William Andrew Publishing, Norwich, pp 311–335

    Google Scholar 

  • Khalil A, Gondal MA, Dastageer MA (2009) Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catal Commun 11(3):214–219

    Article  Google Scholar 

  • Khalil A, Gondal MA, Dastageer MA (2011) Augmented photocatalytic activity of palladium incorporated ZnO nanoparticles in the disinfection of Escherichia coli microorganism from water. Appl Catal A Gen 402(1–2):162–167

    Article  CAS  Google Scholar 

  • Khataee A, Saadi S, Vahid B, Joo SW, Min BK (2016) Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures. Ultrason Sonochem 29:27–38. doi:10.1016/j.ultsonch.2015.07.026 . Epub 2015 Aug 28

    Article  CAS  Google Scholar 

  • Kruglova A, KrÃ¥kström M, Riska M, Mikola A, Rantanen P, Vahala R, Kronberg L (2016) Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions. Bioresour Technol 214:81–88. doi:10.1016/j.biortech.2016.04.037 . [Epub ahead of print]

    Article  CAS  Google Scholar 

  • Langlais B, Reckhow DA, Brink DR (1991) Ozone in water treatment: application and engineering. Lewis Publishers, Inc., Chelsea

    Google Scholar 

  • Lee XJ, Foo LPY, Tan KW, Hassell DG, Lee LY (2012) Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution. J Environ Sci 24(9):1559–1568

    Article  CAS  Google Scholar 

  • Li XG, Feng H, Huang MR (2010) Redox sorption and recovery of silver ions as silver nanocrystals on poly (aniline-co-5-sulfo-2-anisidine)nanosorbents. Chemistry 16(33):10,113–10,123. doi:10.1002/chem.201000506

    Article  CAS  Google Scholar 

  • Mallevialle J, Odendall PE, Wiesner MR (1996) Water treatment membrane processes. McGraw-Hill, New York

    Google Scholar 

  • Mallubhotla H, Belfort G (1997) Flux enhancement during dean vortex microfiltration: 8. Further diagnostics. J Membr Sci 125:75–91

    Article  CAS  Google Scholar 

  • Marcells A, Omole IK, Omowunmi O, Sadik A (2009) Nanostructured materials for improving water quality: potentials and risks. In: Nanotechnology applications for clean water. William Andrew Publishing, Norwich, pp 233–247

    Google Scholar 

  • Mattiasson B (2015) MIPs as tools in environmental biotechnology. Adv Biochem Eng Biotechnol 150:183–205. doi:10.1007/10_2015_311

    CAS  Google Scholar 

  • Melvin SD, Leusch FD (2016) Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies. Environ Int 92–93:183–188. doi:10.1016/j.envint.2016.03.031 . [Epub ahead of print]

    Article  Google Scholar 

  • Ngo H, Vigneswaran S, Sundaravadivel M (2007) Advanced treatment technologies for recycle/reuse of domestic wastewater. In: Vigneswaran SV (ed) Wastewater recycle, reuse and reclamation. Eolss Publishers Co Ltd., Oxford, pp 77–98

    Google Scholar 

  • Nora S, Mamadou SD (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  Google Scholar 

  • Reed BE, Lin W, Viadero R, Young J (1997) Treatment of oily wastes using high-shear rotary ultrafiltration. J Environ Eng ASCE 123:1234–1242

    Article  CAS  Google Scholar 

  • Shalini CA, Pragnesh N, Dave A, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325

    Article  Google Scholar 

  • The Rio Earth Summit (1992, November) Summary of the United Nations conference on environment and development, November 1992

    Google Scholar 

  • Tino S, Achim W, Klaus N, Jürgen R, Dieter B, Thomas H, Guenter EMT (2009) Water treatment by molecularly imprinted polymer nanoparticles. MRS Spring Meeting. Camb J Online 11:69

    Google Scholar 

  • Ventresque C, Turner G, Bablon G (1997) Nanofiltration: from prototype to full scale. J Am Water Works Assoc 89(10):65–76

    CAS  Google Scholar 

  • Vunain E, Mishra AK, Mamba BB (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586. doi:10.1016/j.ijbiomac.2016.02.005 . Epub 2016 Feb 3

    Article  CAS  Google Scholar 

  • Warwick C, Guerreiro A, Wood E, Kitson J, Robinson J, Soares A (2014) A molecular imprinted polymer based sensor for measuring phosphate in wastewater samples. Water Sci Technol 69(1):48–54. doi:10.2166/wst.2013.550

    Article  CAS  Google Scholar 

  • Waypa JJ, Elimelech M, Hering JG (1997) Arsenic removal by RO and NF membrane. J Am Water Works Assoc 89(10):102–114

    CAS  Google Scholar 

  • Wiesner MR, Chellam S (1999) The promise of membrane technology. Environ Sci Technol 33:360A–366A

    Article  CAS  Google Scholar 

  • Wiesner MR, Clark MM, Mallevialle J (1989) Membrane filtration of coagulation suspensions. J Environ Eng ASCE 115:20–40

    Article  CAS  Google Scholar 

  • Wiesner MR, Hackney J, Sethi S, Jacangelo JG, Laine JM (1994) Cost estimates for membrane filtration and conventional treatment. J Am Water Works Assoc 85(12):33–41

    Google Scholar 

  • Xin Z, Lu L, Bingcai P, Weiming Z, Shujuan Z, Quanxing Z (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170(2–3):381–394

    Google Scholar 

  • Yoo RS, Brown DR, Pardini RJ, Bentson GD (1995) Microfiltration: a case study. J Am Water Works Assoc 87(3):38–49

    CAS  Google Scholar 

  • Zhi CW, Yong Z, Ting XT, Lifeng Z, Hao F (2010) Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl Surf Sci 257(3):1092–1097

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Modi Education Society and Dr. Khushwinder Kumar, Principal, Multani Mal Modi College, Patiala for the encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kaur, J., Punia, S., Kumar, K. (2017). Need for the Advanced Technologies for Wastewater Treatment. In: Kumar, R., Sharma, A., Ahluwalia, S. (eds) Advances in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4041-2_3

Download citation

Publish with us

Policies and ethics