Skip to main content

Microbial Flora and Biodegradation of Pesticides: Trends, Scope, and Relevance

  • Chapter
  • First Online:
Advances in Environmental Biotechnology

Abstract

Pesticides, although proving as a fast remedy in pest control, are polluting the environment in a number of ways acting as havoc to mankind and environment. The presence of pesticides above tolerance level has raised concerns about their removal from soil and environment through novel ways like microbial bioremediation. The present book chapter highlights about the microorganisms and their degradation pathways used in removal of a number of pesticides like carbendazim, chlorpyrifos, endosulfan, and sulfosulfuron. There are a number of living and nonliving factors such as pH, temperature of soil, and availability of degrading microbes. Research has been done on isolation of pesticide-degrading microbes, which could act as an efficient and novel bioremediation agents in the future like Brevibacillus borstelensis and Streptomyces albogriseolus that have the ability to remove carbendazim and sulfosulfuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou WN, Mahran MR, Sidky MM, Wamhoff H (1985) Photolysis of methyl 2-benzimidazole carbamate (carbendazim) in the presence of singlet oxygen. Chemosphere 14(9):1343–1353

    Article  CAS  Google Scholar 

  • Ackerman F (2007) The economics of atrazine. Int J Occup Environ Health 13:441–449

    Article  Google Scholar 

  • Ahemad M, Khan MS (2012a) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012b) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24:334–343

    Google Scholar 

  • Aldrich TL, Frantz B, Gill JF, Kilbane JJ, Chakrabarty AM (1987) Cloning and complete nucleotide sequence determination of the catB gene encoding cis, cis-muconate lactonizing enzyme. Gene 52:185–195

    Article  CAS  Google Scholar 

  • Ali M, Gani KM, Kazmi AA, Ahmed N (2016) Degradation of aldrin and endosulfan in rotary drum and windrow composting. J Environ Sci Health B 51(5):278–286

    Article  CAS  Google Scholar 

  • Arias LA, Bojaca CR, Ahumada DA, Schrecens E (2014) Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control 35(1):213–217

    Article  CAS  Google Scholar 

  • Arora A, Tomar SS, Sondhia S (2013) Efficacy of herbicides on wheat and their terminal residues in soil, grain and straw. Ind J Weed Sci 45(2):109–112

    Google Scholar 

  • Arya R, Sharma AK (2014a) Screening, isolation and characterization of Brevibacillus borstelensis for the bioremediation of carbendazim. J Environ Sci Sustain 2(1):12–14

    Google Scholar 

  • Arya R, Sharma AK (2014b) Bioremediation of Carbendazim by Streptomyces albogriseolus. Biointerface Res Appl Chem 4(4):804–807

    Google Scholar 

  • Arya R, Sharma AK (2016) Biodegradation of Carbendazim, a benzimidazole fungicide using Brevibacillus borstelensis and Streptomyces albogriseolus together. Curr Pharm Biotechnol 17(2):185–189

    Article  CAS  Google Scholar 

  • Arya R, Malhotra M, Kumar V, Sharma AK (2015) Biodegradation aspects of Carbendazim and Sulfosulfuron: Trends, scope and relevance. Curr Med Chem 22(9):1147–1155

    Article  CAS  Google Scholar 

  • Berrada H, Fernandez M, Ruiz MJ, Molto JC, Manes J, Font G (2010) Surveillance of pesticide residues in fruits from Valencia during twenty months (2004/2005). Food Control 21:36–44

    Article  CAS  Google Scholar 

  • Beyer EM, Brown HM, Duffy MJ (1987) Sulfonylurea herbicide soil relations. In: Proceedings of the British crop protection conference-Weeds. Brighton, London

    Google Scholar 

  • Bhanti M, Taneja A (2007) Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India. Chemosphere 69:63–68

    Article  CAS  Google Scholar 

  • Bhushan R, Thapar S, Mathur RP (1997) Accumulation pattern of pesticides in tropical fresh waters. Biomed Chromatogr 11(3):143–150

    Article  CAS  Google Scholar 

  • Boudina A, Baaliouamer A, Emmelin C, Chovelon JM (2011) Photostability and phototransformation pathway of an benzimidazolic fungicide. International Conference on Biology, Environment and Chemistry IPCBEE © (2011), vol 24. IACSIT Press, Singapore, pp 367–371

    Google Scholar 

  • Brar PA, Ponia SS, Yadav A, Malik RK (2006a) Microbial degradation of sulfosulfuron in soil under laboratory conditions. Ind J Weed Sci 38(3–4):255–257

    Google Scholar 

  • Brar AP, Punia SS, Yadav A, Malik RK (2006b) Effect of pH on degradation of sulfosulfuron in soil. Ind J Weed Sci 38(1&2):115–118

    Google Scholar 

  • Brown HM (1990) Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic Sci 29:263–281

    Article  CAS  Google Scholar 

  • Cancela GD, Taboada ER, Sanchez-Rasero F (2006) Carbendazim adsorption on montmorillonite, peat and soils. J Soil Sci 43(1):99–111

    Article  Google Scholar 

  • Cessana AJ, Donald DB, Bailey J, Waiser M, Headley JV (2006) Persistence of the sulfonylurea herbicides thifencephalon-methyl, ethametsulfuron-methyl and metsulfuron-methyl in farm dug-outs(ponds). J Environ Qual 35(6):2395–2401

    Article  Google Scholar 

  • Chapalamadugu S, Chaudhry GR (1991) Hydrolysis of carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes carbaryl. Appl Environ Microbiol 57:744–750

    CAS  Google Scholar 

  • Chaudhry GR, Ali AN (1988) Bacterial metabolism of carbofuran. Appl Environ Microbiol 54:1414–1419

    CAS  Google Scholar 

  • Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organic compounds. Microbiol Rev 55:59–79

    CAS  Google Scholar 

  • Chhonkar RS, Malik RK (2002) Isoproturon resistance in Phalaris minor and its response to alternate herbicides. Weed Technol 16:116–123

    Article  Google Scholar 

  • Chiba M, Brown AW, Danic D (1987) Inhibition of yeast respiration and fermentation by benomyl, carbendazim, isocyanates and other fungicidal chemicals. Can J Microbiol 33(2):157–161

    Article  CAS  Google Scholar 

  • Clarke PH (1982) The metabolic versatility of pseudomonads. Antonie Leeuwenhoek 48:105–130

    Article  CAS  Google Scholar 

  • Commandeur LCM, Parsons JR (1990) Degradation of halogenated aromatic compounds. Biodegradation 1:207–220

    Article  CAS  Google Scholar 

  • Davies J, Honeggar JL, Tencalla FG, Maregalli G, Brain P, Newman JR, Pitchford HF (2003) Herbicide Risk Assessment for non-target aquatic plants: sulfosulfuron- -a case study. Pest Manag Sci 59(2):231–237

    Article  CAS  Google Scholar 

  • Degenhardt D, Cessna AJ, Raina R, Pennock DJ, Farenhorst A (2010) Trace level determination of selected sulfonylurea herbicide in wetland sediment by liquid chromatography electrospray tandem mass spectrometry. J Environ Sci Health B 45(1):11–24

    Article  CAS  Google Scholar 

  • Delp CJ (1987) Modern selective fungicides. Wiley, London, pp 233–244

    Google Scholar 

  • Doten RC, Ngai KL, Mitchell DJ, Ornston LN (1987) Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus. J Bacteriol 169:3168–3174

    Google Scholar 

  • Eleftherohorinos I, Dhima K, Vasilakoglou I (2004) Activity, adsorption, mobility and field persistence of sulfosulfuron in soil. Phytoparasitica 32(3):274–285

    Article  CAS  Google Scholar 

  • Enriqueta-Arias M, Gonzalez-Perez JA, Gonzalez-Vila FJ, Ball AS (2005) Soil health a new challenge for microbiologists and chemists. Int Microbiol 8:13–21

    Google Scholar 

  • Fang H, Wang Y, Gao C, Dong B, Yu Y (2010) Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation 21(6):939–946

    Google Scholar 

  • Feng X, Oui LT, Orgam A (1997) Plasmid mediated mineralization of carbofuran by Sphingomonas sp. Strain CF06. Appl Environ Microbiol 63:1332–1337

    Google Scholar 

  • Fenoll J, Hellin P, Flores P, Martinez CM, Navarro S (2012) Photocatalytic degradation of five sulfonylurea herbicides in aqueous semiconductor suspensions under natural sunlight. Chemosphere 87(8):954–961

    Article  CAS  Google Scholar 

  • Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 54:85–110

    Article  CAS  Google Scholar 

  • Foster KE, Burland TG, Gull KA (1987) Mutant beta-tubulin confers resistance to the action of benzimidazole carbamate microtubule inhibitors both in vivo and in vitro. Fur J Biochem 163:449–455

    CAS  Google Scholar 

  • Fuentes M, Benimeli CS, Cuozzo SA, Saez JM, Amoroso MJ (2010) Microorganisms capable to degrade organochlorine pesticides. Curr Res Technol Edu Top Appl Microbiol Microbial Biotech 2(2):1255–1264

    Google Scholar 

  • Garcia PC, Rivero RM, Lopez-Lefebre LR, Sanchez E, Ruiz JM, Romero L (2001) Direct action of the biocide carbendazim on phenolic metabolism in tobacco plants. J Agric Food Chem 49:131–137

    Article  CAS  Google Scholar 

  • Ghaly AE, Dave D (2012) Kinetics of biological treatment of low level pesticide wastewater. Am J Environ Sci 8:424–432

    Article  CAS  Google Scholar 

  • Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM (2004) Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol 70:2692–2701

    Article  CAS  Google Scholar 

  • Gray LE, Ostby J, Linder R, Goldman J, Rehnberg G, Cooper R (1990) Carbendazim induced alteration of reproductive development and function in the rat and hamster. Fundam Appl Toxicol 15:281–297

    Article  CAS  Google Scholar 

  • Gupta M, Mathur S, Sharma TK, Rana M, Gairola A, Navani NK, Pathania R (2016) A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J Hazard Mater 15(301):250–258

    Google Scholar 

  • Hadizadeh MH (2010) Bioassay study of sulfosulfuron herbicide. In: Proceedings of 3rd Iranian Weed Sciences Congress, vol 2, pp 523–526

    Google Scholar 

  • Hernandez F, Portoles T, Ibanez M, Bustos-Lopez MC, Diaz R, Botero-Coy AM, Fuentes CL, Penuela G (2012) Use of time of flight mass spectrometery for large screening of organic pollutants in surface waters and soils from a rice production area in Columbia. Sci Total Environ 439:249–259

    Article  CAS  Google Scholar 

  • Horn JM, Harayama S, Timmis KN (1991) DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism. Mol Microbiol 5:2459–2474

    Google Scholar 

  • Hughes EJ, Shapiro MK, Houghton JE, Ornston LN (1988) Cloning and expression of pca genes from Pseudomonas putida in Escherichia coli. J Gen Microbiol 134:2877–2887

    Google Scholar 

  • Illing HPA (1997) Is working in greenhouses healthy? Evidence concerning the toxic risks that might affect greenhouse workers. Occup Med 47:281–293

    Article  CAS  Google Scholar 

  • Jin X, Ren J, Wang B, Lu Q, Yu Y (2013) Impact of coexistence of carbendazim, atrazine and imidacloprid on their adsorption, desorption and mobility in soil. Environ Sci Pollut Res Int 20(9):6282–6289

    Article  CAS  Google Scholar 

  • Kale SP, Murthy NBK, Raghu K (1989) Effect of carbofuran, Carbaryl and their metabolites in the growth of Rhizobium sp. and Azotobacter chroococcum. Bull Environ Contam Toxicol 42:769–772

    Article  CAS  Google Scholar 

  • Kaufman DD (1987) Accelerated biodegradation of pesticides in soil and its effect on pesticide efficacy. Proc Br Crop Prot Conf Weed 2:515–522

    Google Scholar 

  • Kiss A, Virag D (2009) Photostability and photodegradation pathways of distinctive pesticides. J Environ Qual 38(1):157–163

    Article  CAS  Google Scholar 

  • Leistra M, Matser AM (2004) Adsorption, Transformation and Bioavailability of the fungicides Carbendazim and Iprodione in soil, alone and in combination. J Environ Sci Health B 39(1):1–17

    Article  Google Scholar 

  • Li G, Xu J, Wu L, Ren D, Ye W, Dong G, Zhu L, Zeng D, Guo L (2015) Full genome sequence of Brevibacillus laterosporus strain B9, a biological control strain isolated from Zhejiang, China. J Biotechnol 10(207):77–78

    Google Scholar 

  • Lim J, Miller MG (1997) The role of benomyl metabolite carbendazim in benomyl-induced testicular toxicity. Toxicol Appl Pharmacol 142(2):401–410

    Article  CAS  Google Scholar 

  • Lin X, Hou Z, Feng Y, Zhao S, Ye J, (2011) Isolation and characteristics of carbendazim degradation bacterium. In: 2011 international conference on agricultural and biosystems engineering. Adv Biomed Eng 1–2

    Google Scholar 

  • Maltby L, Brock TM, Vandenbrink P (2009) Fungicide Risk Assessment for aquatic ecosystems: Importance of interspecific variation, toxic mode of action, and exposure. Environ Sci Technol 43:7556–7563

    Article  CAS  Google Scholar 

  • Mazeilier E, Leroy E, Legube B (2002) Photochemical behavior of fungicide carbendazim in dilute aqueous solution. J Photochem Photobiol Chem 153:221–227

    Article  Google Scholar 

  • Mazellier P, Leroy E, Laat JD, Legube B (2003) Degradation of carbendazim by UV/H2O2 investigated by kinetic modelling. Environ Chem Lett 1(1):68–72

    Article  CAS  Google Scholar 

  • Medina A, Mateo R, Valle-Algarra FM, Mateo EM, Jiménez M (2007) Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grapes. Int J Food Microbiol 119(3):230–235

    Google Scholar 

  • Moffit JS, Bryant BH, Hall SJ, Boekelheide K (2007) Dose dependent effects of sertoli cell toxicants 2,5-hexanedione, carbendazim, and mono-(2-ethylhexyl) phthalate in adult rat testis. Toxicol Pathol 35:719–727

    Article  CAS  Google Scholar 

  • Mohiuddin M, Mohammed MK (2014) Fungicide (carbendazim and herbicides 2, 4-D and atrazine) influence on soil microorganisms and soil enzymes of rhizospheric soil of groundnut crop. Int J Rec Sci Res 5(3):585–589

    Google Scholar 

  • Morinaga H, Yanase T, Nomura M, Okabe T, Goto K, Harada N, Nawata H (2004) A benzimidazole fungicide, benomyl and its metabolite, carbendazim, induce aromatase activity in human ovarian granulose-like tumor cell line (KGN). Endocrinology 145(4):1860–1869

    Article  CAS  Google Scholar 

  • Nagase H, Pattanasupong A, Sugimoto E, Tani K, Nasu M, Hirata K, Miyamoto K (2006) Effect of environmental factors on performance of immobilized consortium system for degradation of carbendazim and 2,4-dichlorophenoxyacetic acid in continuous culture. Biochem Eng J 29(1):163–168

    Article  CAS  Google Scholar 

  • Ornston LN, Houghton J, Neidle EL, Gregg LA (1990) Subtle selection and novel mutation during evolutionary divergence of the B-ketoadipate pathway, pp 207–225

    Google Scholar 

  • Osteen C, Livingstion M (2007) Pest management practices. In: Wiebeand KD, Gollehon NR (eds) Agricultural resources and environmental indicators. Nova Publishers, New York, pp 129–183

    Google Scholar 

  • Panades R, Ibarz A, Esplugas S (2000) Photodecomposition of carbendazim in aqueous solutions. Water Res 34(11):2951–2954

    Article  CAS  Google Scholar 

  • Pareja L, Colazzo M, Perez-Parada A, Besil N, Heinzen H, Bocking B, Cesio V, Fernandez-Alba AR (2012) Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing. J Agric Food Chem 60(18):4440–4448

    Article  CAS  Google Scholar 

  • Parekh NR, Hartman A, Charnay MP, Fournier JC (1995) Diversity of carbofuran degrading soil bacteria and detection of plasmid-encoded sequences homologous to the mcd gene. FEMS Microbiol Ecol 17:149–160

    Article  CAS  Google Scholar 

  • Paszko T (2012) Effect of pH on the adsorption of carbendazim in Polish mineral soils. Sci Total Environ 1:435–436

    Google Scholar 

  • Pimental D (2007) Environmental and economic costs of the application of pesticides primarily in United States. In: Pimentel M, Pimentel D (eds) Food, energy and society, 3rd edn. CRC Press, New York

    Google Scholar 

  • Pinjari AB, Novikov B, Rezenom YH, Russell DH, Wales ME, Siddavattam D, (2012) Mineralization of acephate, a recalcitrant organophosphate insecticide is initiated by a pseudomonad in environmental samples. PLoS One 7(4):e31963, 1–9

    Google Scholar 

  • Quinlan RA, Pogson CI, Gull K (1980) The influence of the microtubule inhibitor, methyl benzimidazole-1-yl-carbamate (MBC) on nuclear division and the cell cycle in Saccharomyces cerevisiae. J Cell Sci 46:341–352

    CAS  Google Scholar 

  • Rajeswari R, Kanmani S (2009) TiO2- Based heterogenous photocatalytic treatment combined with ozonation for carbendazim degradation. Iran J Environ Health Sci Eng 6(2):61–66

    CAS  Google Scholar 

  • Rajeswary S, Kumaran B, Ilangovan R, Yuvaraj S, Sridhar M, Venkataraman P, Srinivasan N, Aruldhas MM (2007) Modulation of antioxidant defense system by the environmental fungicide carbendazim in Leydig cells of rats. Reprod Toxicol 24:371–380

    Article  CAS  Google Scholar 

  • Ramanand K, Sharmila M, Sethunathan N (1988) Mineralization of carbofuran by a soil bacterium. Appl Environ Microbiol 54:2129–2133

    CAS  Google Scholar 

  • Ramesh A, Sathiyanarayanan S, Chandran L (2007) Dissipation of sulfosulfuron in water-bioaccumulation of residues in fish- LC-MS/MS-ESI identification and quantification of metabolites. Chemosphere 68(3):495–500

    Article  CAS  Google Scholar 

  • Reineke W (1984) Microbial degradation of halogenated aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, Inc., New York, pp 319–360

    Google Scholar 

  • Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287

    Article  CAS  Google Scholar 

  • Ribeiro MG, Colasso CG, Monteiro PP, Filho WRP, Yonamine M (2012) Occupational safety and health practices among flower greenhouses workers from Alto Tietê region (Brazil). Sci Total Environ 416:121–126

    Article  CAS  Google Scholar 

  • Ros M, Goberna M, Moreno JL, Hernandez T, Garcia C, Insam H, Pascual JA (2006) Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine. Appl Soil Ecol 34:93–102

    Article  Google Scholar 

  • Saha S, Kulshrestha G (2002) Degradation of sulfosulfuron, a sulfonylurea herbicide, as influenced by abiotic factors. J Agric Food Chem 50(16):4572–4575

    Article  CAS  Google Scholar 

  • Saha S, Singh SB, Kulshrestha G (2003) High performance liquid chromatography method for residue determination of sulfosulfuron. J Environ Sci Health B 38(3):337–347

    Article  Google Scholar 

  • Sara M, Somayyeh KM, Mohammad A (2013) Environmental and population studies concerning exposure to pesticides in Iran: a comprehensive review. Iran Red Cres Med J 15(12):e13896

    Google Scholar 

  • Sarmah AK, Sabadie J (2002) Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J Agric Food Chem 50(22):6253–6265

    Article  CAS  Google Scholar 

  • Schneider B, Muller R, Frank L (1991) Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas sp. strain CBS3. J Bacteriol 173:1530–1535

    Article  CAS  Google Scholar 

  • Selvaraj S, Basavaraj B, Hebsur NS (2014) Pesticides use and their residues in soil, grains and water of paddy ecosystem- a review. Agric Rev 35(1):50–56

    Article  Google Scholar 

  • Seo YH, Cho TH, Hong CK, Kim MS, Cho SJ, Park WH, Hwang IS, Kim MS (2013) Monitoring and risk assessment of pesticide residues in commercially dried vegetables. Prev Nutr Food Sci 18(2):145–149

    Article  CAS  Google Scholar 

  • Sharma AK, Arya R, Mehta R, Sharma R, Sharma AK (2013) Hypo-Thyroidism and cardiovascular disease: factors, mechanism and future perspectives. Curr Med Chem 20(35):4411–4418

    Article  CAS  Google Scholar 

  • Shen J, Liu J, Liu J (2009) Determination of Carbendazim residue in orange and soil using high performance liquid chromatography. Se Pu 27(3):308–312

    CAS  Google Scholar 

  • Thapar S, Bhushan R, Mathur RP (1995) Degradation of organophosphorous pesticides in soils—HPLC determination. Biomed Chromatogr 9(1):18–22

    Article  CAS  Google Scholar 

  • Utture SC, Banerjee K, Dasgupta S, Patil SH, Jadhav MR, Wagh SS, Kolekar SS, Anuse MA, Adsule PG (2011) Dissipation and distribution behaviour of azoxystrobin, carbendazim and difenoconazole in pomegranate fruits. J Agric Food Chem 59(14):7866–7873

    Article  CAS  Google Scholar 

  • Walia US, Brar LS (2006) Current status of Phalaris minor resistance against isoproturon and alternate herbicides in the rice-wheat cropping systems in Punjab. Ind J Weed Sci 38(3&4):207–212

    Google Scholar 

  • Wang L (1999) Current situation and future trend of farm chemical industry in China. Chem 38:1–8

    CAS  Google Scholar 

  • Wang J, Xu J, Li Y, Wang K, Wang Y, Hong Q, Li WJ, Li SP (2010) Rhodococcus jiangilae sp. nov., an actinobacterium isolated from carbendazim wastewater treatment facility. Int J Syst Evol Microbiol 60:378–381

    Article  CAS  Google Scholar 

  • Wood JS (1982) Genetic effects of methyl benzimidazole-2-yl-carbamate on Saccharomyces cerevisiae. Mol Cell Biol 2(9):1064–1079

    Article  CAS  Google Scholar 

  • Xiao W, Wang H, Li T, Zhu Z, Zhang J, He Z, Yang X (2012a) Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum Alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pol 12:0902–0904

    Google Scholar 

  • Xiao WD, Yang XE, Li TQ (2012b) Degradation of carbendazim in paddy soil and its influencing factors. Huan Jing Ke Xue 33(11):3983–3989

    CAS  Google Scholar 

  • Xiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G (2015) Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biotechnol 99(6):2849–2859

    Article  CAS  Google Scholar 

  • Yan H, Wang D, Dong B, Tang F, Wang B, Fang H, Yu Y (2011a) Dissipation of carbendazim and chloramphenicol alone and in combination and their effect on soil fungal: bacterial ratios and soil enzyme activities. Chemosphere 84(5):634–641

    Article  CAS  Google Scholar 

  • Yan C, Zhang B, Liu W, Feng F, Zhao Y, Du H (2011b) Rapid determination of sixteen sulfonylurea herbicides in surface water by solid phase extraction cleanup and ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879(30):3489–3489

    Article  Google Scholar 

  • Yao LX, Huang LX, Li GL, He ZH, Zhou CM, Yang BM, Guo B (2010) Pesticide residual status in litchi orchard soils in Guangdong, China. Huan Jing Ke Xue 31(11):2723–2726

    CAS  Google Scholar 

  • Yarden O, Katan J, Aharonson N (1985) A rapid bioassay for the determination of carbendazim residues in soil. Plant Pathol 34:69–74

    Article  CAS  Google Scholar 

  • Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK (1991) Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J Bacteriol 173:5315–5327

    Article  CAS  Google Scholar 

  • Yu L (2006) A review on development of pesticides industry in China. Mark. Inf Pestic 24:14–16

    Google Scholar 

  • Yu GC, Xie L, Liu YZ, Wang XF (2009) Carbendazim affects testicular development and spermatogenic function in rats. Zhonghua Nan Ke Xue 15(6):505–510

    CAS  Google Scholar 

  • Zhang J (2001) A study on strategy of plant protection development. Plant Prot 27:36–37

    Google Scholar 

  • Zhang L, Qiao X, Ma L (2009) Influence of environmental factors on degradation of carbendazim by Bacillus pumilus strain NY97–1. Int J Environ Pollut 38(3):309–317

    Article  CAS  Google Scholar 

  • Zhichun W, Jingliang X, Li Y, Kun W, Yangyang W, Qing H, Li W, Li S (2010) Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazim wastewater treatment facility. Int J Syst Evol Microbiol 60:371–381

    Google Scholar 

  • Zuelke KA, Perreault SD (1995) Carbendazim (MBC) disrupts oocyte spindle function and induces aneuploidy in hamsters exposed during fertilization (meiosis II). Mol Reprod Dev 42:200–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Arya, R., Kumar, R., Mishra, N.K., Sharma, A.K. (2017). Microbial Flora and Biodegradation of Pesticides: Trends, Scope, and Relevance. In: Kumar, R., Sharma, A., Ahluwalia, S. (eds) Advances in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4041-2_15

Download citation

Publish with us

Policies and ethics