Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In recent years, macro plastic fibres have widely been used to replace traditional steel reinforcement in the construction of concrete footpaths, precast elements and shotcrete tunnel linings. Recycled polypropylene (PP) fibres offer significant environmental benefits over virgin PP fibres or steel mesh. However, the recycled PP fibres have not yet been widely adopted by construction industries due to limited research. This project aims to develop recycled PP fibres, which can be used to replace virgin PP fibre and steel mesh. This chapter introduces the rationale for this project, provides the research objectives and explains the origination of this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A’Vard D, Allan P (2014) 2013–14 National plastics recycling survey. National Packaging Covenant Industry Association, Sustainable Resource Use Pty Ltd, R03-03-A11013

    Google Scholar 

  • Afrinaldi F, Zhang HC (2014) A fuzzy logic based aggregation method for life cycle impact assessment. J Clean Prod 67:159–172

    Article  Google Scholar 

  • Alani AM, Beckett D (2013) Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Constr Build Mater 41:335–344

    Article  Google Scholar 

  • BPIC (2010) Building products life cycle inventory www.bpic.asn.au/LCI. Assessed by 10 Nov 2014

  • Brandt AM (2008) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct 86:3–9

    Article  Google Scholar 

  • Buratti N, Mazzotti C, Savoia M (2011) Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Constr Build Mater 25:2713–2722

    Article  Google Scholar 

  • Castro ACM, Carvalho JP, Ribeiro MCS, Meixedo JP, Silva FJG, Fiuza A, Dinis ML (2014) An integrated recycling approach for GFRP pultrusion wastes: recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets. J Clean Prod 66:420–430

    Article  Google Scholar 

  • Chilton T, Burnley S, Nesaratnam S (2010) A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET. Resour Conserv Recy 54:1241–1249

    Article  Google Scholar 

  • Daniel JI, Gopalaratnam VS, Galinat MA (2002) State-of-the-art Report on Fiber Reinforced Concrete, ACI Committee 544, Report 544, 1R-96, American Concrete Institute, Detroit, USA

    Google Scholar 

  • de Oliveira LAP, Castro-Gomes JP (2011) Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Constr Build Mater 25:1712–1717

    Article  Google Scholar 

  • Dodbiba G, Takahashi K, Sadaki J, Fujita T (2008) The recycling of plastic wastes from discarded TV sets: comparing energy recovery with mechanical recycling in the context of life cycle assessment. J Clean Prod 16:458–470

    Article  Google Scholar 

  • Dormer A, Finn DP, Ward P, Cullen J (2013) Carbon footprint analysis in plastics manufacturing. J Clean Prod 51:133–141

    Article  Google Scholar 

  • Duval D, MacLean HL (2007) The role of product information in automotive plastics recycling: a financial and life cycle assessment. J Clean Prod 15:1158–1168

    Article  Google Scholar 

  • EPC (2012) Advanced alkalinity testing. Elasto Plastic Concrete. www.elastoplastic.com. Assessed by 10 Nov 2014

  • Eriksson O, Reich MC, Frostell B, Bjorklund A, Assefa G, Sundqvist JO, Granath J, Baky A, Thyselius L (2005) Municipal solid waste management from a systems perspective. J Clean Prod 13:241–252

    Article  Google Scholar 

  • Foti D (2011) Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr Build Mater 25:1906–1915

    Article  Google Scholar 

  • Fraternali F, Ciancia V, Chechile R, Rizzano G, Feo L, Incarnato L (2011) Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos Struct 93:2368–2374

    Article  Google Scholar 

  • Fraternali F, Spadea S, Berardi VP (2014) Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Constr Build Mater 61:293–302

    Article  Google Scholar 

  • Gallardo A, Carlos M, Bovea MD, Colomer FJ, Albarran F (2014) Analysis of refuse-derived fuel from the municipal solid waste reject fraction and its compliance with quality standards. J Clean Prod 83:118–125

    Article  Google Scholar 

  • Gregor-Svetec D, Sluga F (2005) High modulus polypropylene fibers. I. Mechanical properties. J Appl Polym Sci 98:1–8

    Article  Google Scholar 

  • Hasan M, Afroz M, Mahmud H (2011) An experimental investigation on mechanical behavior of macro synthetic fibre reinforced concrete. Int J Civil Environ Eng IJCEE-IJENS 11:18–23

    Google Scholar 

  • Jafarifar N, Pilakoutas K, Bennett T (2014) Moisture transport and drying shrinkage properties of steel-fibre-reinforced-concrete. Constr Build Mater 73:41–50

    Article  Google Scholar 

  • Jesus KRED, Lanna AC, Vieira FD, Abreu ALD, Lima DUD (2006) A proposed risk assessment method for genetically modified plants applied biosafety, vol 11, pp 127–137

    Google Scholar 

  • Jesus-Hitzschky KRED (2007) Impact assessment system for technological innovation: INOVA-tec system. J Technol Manage Innov 2:67–82

    Google Scholar 

  • Kaufmann J, Frech K, Schuetz P, Munch B (2013) Rebound and orientation of fibers in wet sprayed concrete applications. Constr Build Mater 49:15–22

    Article  Google Scholar 

  • Kim JHJ, Park CG, Lee SW, Lee SW, Won JP (2008) Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Compos Part B-Eng 39:442–450

    Article  Google Scholar 

  • Kim SB, Yi NH, Kim HY, Kim JHJ, Song YC (2010) Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement Concrete Comp 32:232–240

    Article  Google Scholar 

  • La Vedrine MAG, Sheahan DA, Gioia R, Rowles B, Kroeger S, Phillips C, Kirby MF (2015) Substitution of hazardous offshore chemicals in UK waters: an evaluation of their use and discharge from 2000 to 2012. J Clean Prod 87:675–682

    Article  Google Scholar 

  • Ochi T, Okubo S, Fukui K (2007) Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement Concrete Comp 29:448–455

    Article  Google Scholar 

  • Pelisser F, Neto ABDS, La Rovere HL, Pinto RCD (2010) Effect of the addition of synthetic fibers to concrete thin slabs on plastic shrinkage cracking. Constr Build Mater 24:2171–2176

    Article  Google Scholar 

  • Peyvandi A, Soroushian P, Jahangirnejad S (2013) Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement. Constr Build Mater 45:36–44

    Article  Google Scholar 

  • PlasticsEurope (2015) Plastics—the facts 2014/2015. An analysis of European plastics production, demand and waste data www.plasticseurope.org. Accessed by 09 Mar 2015

  • Pujadas P, Blanco A, Cavalaro S, Aguado A (2014) Plastic fibres as the only reinforcement for flat suspended slabs: experimental investigation and numerical simulation. Constr Build Mater 57:92–104

    Article  Google Scholar 

  • Ramezanianpour AA, Esmaeili M, Ghahari SA, Najafi MH (2013) Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Constr Build Mater 44:411–418

    Article  Google Scholar 

  • Silva DA, Betioli AM, Gleize PJP, Roman HR, Gomez LA, Ribeiro JLD (2005) Degradation of recycled PET fibers in Portland cement-based materials. Cement Concrete Res 35:1741–1746

    Article  Google Scholar 

  • Strezov L, Herbertson J (2006) A life cycle perspective on steel building materials. Principals of the Crucible Group Pty Ltd

    Google Scholar 

  • U.S.EPA (2014) Wastes—Resource Conservation—Common Wastes & Materials. www.epa.gov/osw/conserve/materials/plastics.htm. Assessed by 09 Mar 2015

  • Velis C (2014) Global recycling markets—plastic waste: A story for one player—China. Report prepared by FUELogy and formatted by D-waste on behalf of International Solid Waste Association—Globalisation and Waste Management Task Force. ISWA, Vienna, Sept 2014

    Google Scholar 

  • Won JP, Jang CI, Lee SW, Lee SJ, Kim HY (2010) Long-term performance of recycled PET fibre-reinforced cement composites. Constr Build Mater 24:660–665

    Article  Google Scholar 

  • Yin S, Tuladhar R, Shanks RA, Collister T, Combe M, Jacob M, Tian M, Sivakugan N (2015) Fiber preparation and mechanical properties of recycled polypropylene for reinforcing concrete. J Appl Polym Sci 132:41866

    Google Scholar 

  • Zheng ZH, Feldman D (1995) Synthetic Fiber-Reinforced Concrete. Prog Polym Sci 20:185–210

    Article  Google Scholar 

  • Zhou CB, Fang WJ, Xu WY, Cao AX, Wang RS (2014) Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J Clean Prod 80:80–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yin, S. (2017). Introduction. In: Development of Recycled Polypropylene Plastic Fibres to Reinforce Concrete. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3719-1_1

Download citation

Publish with us

Policies and ethics