Skip to main content

Stress Partitioning in Two-Phase Media: Experiments and Remarks on Terzaghi’s Principle

  • Chapter
  • First Online:
Variational Continuum Multiphase Poroelasticity

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 67))

  • 662 Accesses

Abstract

Stress partitioning in multiphase porous media is a fundamental problem of solid mechanics, yet not completely understood: no unanimous agreement has been reached on the formulation of a stress partitioning law encompassing all observed experimental evidences in two-phase media, and on the range of applicability of such a law. This chapter has two main objectives. The first one is to show the capability of the variational poroelastic theory developed in Chaps. 2 and 3 (VMTPM) to systematically and consistently describe stress partitioning in compression tests characterized by different loading and drainage conditions, and for three classes of materials: linear media, media with solid phase having no-tension response, and cohesionless granular media. The second objective is to perform a theoretical-experimental analysis on the range of applicability of the notions of effective stress and effective stress principles, in light of the general medium-independent stress partitioning law derived in Chap. 2 which predicts that the external stress, the fluid pressure and the stress tensor work associated with the macroscopic strain of the solid phase are always partitioned according to a relation formally compliant with Terzaghi’s law, irrespective of the microstructural and constitutive features of a given medium. Herein, the description of boundary conditions with unilateral contact is examined making use of a simple and straightforward extension of the standard formulation of contact in single-continuum problems, employing a set-valued law and a gap function. Next, the modalities of stress partitioning characteristic of Undrained Flow (UF) conditions, corresponding to absence of fluid seepage, are examined in further detail, identifying the possibility to characteristically define in a physically meaningful way, expressly at UF conditions, a stress tensor field of the whole mixture, as a quantity closely related to the concept of total stress tensor field. The systematic study carried out in this chapter allows showing that compliance with the classical statement of Terzaghi’s effective stress principle can be rationally derived as the peculiar behavior of the specialization of VMTPM recovered for cohesionless granular media, without making use of artificial incompressibility constraints. Moreover, it is shown that the experimental observations on saturated sandstones, generally considered as proof of deviations from Terzaghi’s law, are ordinarily predicted by VMTPM. In addition, a rational deduction of the phenomenon of compression-induced liquefaction in cohesionless mixtures is reported: such effect is found to be a natural implication of VMTPM when unilateral contact conditions are considered for the solid above a critical porosity. Finally, a characterization of the phenomenon of crack closure in fractured media is inferred in terms of macroscopic strain and stress paths. Altogether these results exemplify the capability of VTMPM to describe and predict a large class of linear and nonlinear mechanical behaviors observed in two-phase saturated materials. As a conclusion of this study, a generalized statement of Terzaghi’s principle for multiphase problems is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM Standard D 2435-96. Standard test method for one-dimensional consolidation properties of soils. Annual book of ASTM standards, vol. 04.08 (1998)

    Google Scholar 

  2. Albers, B., Wilmański, K.: Influence of coupling through porosity changes on the propagation of acoustic waves in linear poroelastic materials. Arch. Mech. 58(4–5), 313–325 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Armstrong, C., Lai, W., Mow, V.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106(2), 165–173 (1984)

    Article  Google Scholar 

  4. Ateshian, G., Warden, W., Kim, J., Grelsamer, R., Mow, V.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30(11), 1157–1164 (1997)

    Article  Google Scholar 

  5. Baveye, P.C.: Comment on “averaging theory for description of environmental problems: what have we learned?” by William G. Gray, Cass T. Miller, and Bernhard A. Schrefler. Adv. Water Resour. 52, 328–330 (2013)

    Article  Google Scholar 

  6. Bedford, A., Drumheller, D.: A variational theory of porous media. Int. J. Solids Struct. 15(12), 967–980 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    MathSciNet  Google Scholar 

  9. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  10. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bishop, A.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959)

    Google Scholar 

  13. Bishop, A.: The influence of an undrained change in stress on the pore pressure in porous media of low compressibility. Geotechnique 23(3), 435–442 (1973)

    Google Scholar 

  14. de Boer, R.: Theoretical poroelasticity – a new approach. Chaos Solitons Fractals 25(4), 861–878 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Boer, R., Ehlers, W.: The development of the concept of effective stresses. Acta Mechanica 83(1–2), 77–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)

    Article  MATH  Google Scholar 

  17. Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester (1995)

    MATH  Google Scholar 

  18. Coussy, O., Dormieux, L., Detournay, E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35(34), 4619–4635 (1998)

    Article  MATH  Google Scholar 

  19. De Boer, R.: Theory of porous media-past and present. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 78(7), 441–466 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. De Buhan, P., Dormieux, L.: On the validity of the effective stress concept for assessing the strength of saturated porous materials: a homogenization approach. J. Mech. Phys. Solids 44(10), 1649–1667 (1996)

    Article  Google Scholar 

  21. dell’Isola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid. a second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    Article  MATH  Google Scholar 

  22. Dell’Isola, F., Hutter, K.: What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets? In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 1169–1195. The Royal Society (1998)

    Google Scholar 

  23. Ehlers, W.: Foundations of multiphasic and porous materials. In: Porous Media, pp. 3–86. Springer, Berlin (2002)

    Google Scholar 

  24. Fragaszy, R.J., Voss, M.E.: Undrained compression behavior of sand. J. Geotech. Eng. 112(3), 334–347 (1986)

    Article  Google Scholar 

  25. Fredlund, D.G., Morgenstern, N.R.: Stress state variables for unsaturated soils. J. Geotech. Geoenviron. Eng. 103(12919(ASCE)), 447–466 (1977)

    Google Scholar 

  26. Gray, W.G., Schrefler, A.B.: Analysis of the solid phase stress tensor in multiphase porous media. Int. J. Numer. Anal. Methods Geomech. 31(4), 541–581 (2007)

    Article  MATH  Google Scholar 

  27. Gajo, A.: A general approach to isothermal hyperelastic modelling of saturated porous media at finite strains with compressible solid constituents. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (2010)

    Google Scholar 

  28. Gong, G.: Dem simulations of drained and undrained behaviour. Ph.D. thesis, PhD thesis, University of Birmingham, UK (2008)

    Google Scholar 

  29. Goodman, M., Cowin, S.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gray, W.G., Hassanizadeh, S.M.: Unsaturated flow theory including interfacial phenomena. Water Resour. Res. 27(8), 1855–1863 (1991)

    Article  Google Scholar 

  31. Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. motivation and overview. Adv. Water Resour. 28(2), 161–180 (2005)

    Article  Google Scholar 

  32. Gray, W.G., Miller, C.T., Schrefler, B.A.: Averaging theory for description of environmental problems: what have we learned? Adv. Water Resour. 51, 123–138 (2013)

    Article  Google Scholar 

  33. Gray, W.G., Schrefler, B.A., Pesavento, F.: The solid phase stress tensor in porous media mechanics and the hill-mandel condition. J. Mech. Phys. Solids 57(3), 539–554 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1. averaging procedure. Adv. Water Resour. 2, 131–144 (1979)

    Article  Google Scholar 

  35. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 3. constitutive theory for porous media flow. Adv. Water Resour. 3(1), 25–40 (1980)

    Article  Google Scholar 

  36. Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  37. Hellmich, C., Ulm, F.J.: Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanical investigation. Transp. Porous Media 58(3), 243–268 (2005)

    Article  Google Scholar 

  38. Jardine, R., Gens, A., Hight, D., Coop, M.: Developments in understanding soil behaviour. In: Advances in Geotechnical Engineering: The Skempton Conference, p. 103. Thomas Telford (2004)

    Google Scholar 

  39. Kramer, S.L., Seed, H.B.: Initiation of soil liquefaction under static loading conditions. J. Geotech. Eng. 114(4), 412–430 (1988)

    Article  Google Scholar 

  40. Lade, P., De Boer, R.: The concept of effective stress for soil, concrete and rock. Geotechnique 47(1), 61–78 (1997)

    Article  Google Scholar 

  41. Lai, W., Mow, V.: Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17(1–2), 111–123 (1979)

    Google Scholar 

  42. Lancellotta, R.: Coupling between the evolution of a deformable porous medium and the motion of fluids in the connected porosity. In: Porous Media, pp. 199–225. Springer, Berlin (2002)

    Google Scholar 

  43. Lancellotta, R.: Geotechnical Engineering. CRC Press, Boca Raton (2008)

    Google Scholar 

  44. Markert, B.: A biphasic continuum approach for viscoelastic high-porosity foams: comprehensive theory, numerics, and application. Arch. Comput. Methods Eng. 15(4), 371–446 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Courier Dover Publications (1994)

    Google Scholar 

  46. Mow, V., Kuei, S., Lai, W., Armstrong, C.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)

    Article  Google Scholar 

  47. Nur, A., Byerlee, J.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76(26), 6414–6419 (1971)

    Article  Google Scholar 

  48. Nuth, M., Laloui, L.: Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int. J. Numer. Anal. Methods Geomech. 32(7), 771–801 (2008)

    Article  MATH  Google Scholar 

  49. Oloyede, A., Broom, N.: Complex nature of stress inside loaded articular cartilage. Clin. Biomech. 9(3), 149–156 (1994)

    Article  Google Scholar 

  50. Pietruszczak, S., Pande, G.: On the mechanical response of saturated cemented materials—part i: theoretical considerations. Int. J. Numer. Anal. Methods Geomech. 19(8), 555–562 (1995)

    Article  MATH  Google Scholar 

  51. Pietruszczak, S., Turu, G., Pande, G.: On the mechanical response of saturated cemented materials—part ii: experimental investigation and numerical simulations. Int. J. Numer. Anal. Methods Geomech. 19(8), 563–571 (1995)

    Article  Google Scholar 

  52. Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 14(2), 227–241 (1976)

    Article  Google Scholar 

  53. Schrefler, B.: Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. 55(4), 351–388 (2002)

    Article  Google Scholar 

  54. Serpieri, R.: A rational procedure for the experimental evaluation of the elastic coefficients in a linearized formulation of biphasic media with compressible constituents. Transp. Porous Media 90(2), 479–508 (2011)

    Article  MathSciNet  Google Scholar 

  55. Serpieri, R., Rosati, L.: Formulation of a finite deformation model for the dynamic response of open cell biphasic media. J. Mech. Phys. Solids 59(4), 841–862 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Serpieri, R., Travascio, F.: A purely-variational purely-macroscopic theory of two-phase porous media—part i: Derivation of medium-independent governing equations and stress partitioning laws. Submitted

    Google Scholar 

  57. Serpieri, R., Travascio, F.: General quantitative analysis of stress partitioning and boundary conditions in undrained biphasic porous media via a purely macroscopic and purely variational approach. Contin. Mech. Thermodyn. 28(1–2), 235–261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Serpieri, R., Travascio, F., Asfour, S.: Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. In: Computational Methods for Coupled Problems in Science and Engineering V—A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS, pp. 1142–1153 (2013)

    Google Scholar 

  59. Serpieri, R., Travascio, F., Asfour, S., Rosati, L.: Variationally consistent derivation of the stress partitioning law in saturated porous media. Int. J. Solids Struct. 56–57, 235–247 (2015)

    Article  Google Scholar 

  60. Skempton, A.: The pore-pressure coefficients a and b. Geotechnique 4(4), 143–147 (1954)

    Article  Google Scholar 

  61. Skempton, A.: Effective stress in soils, concrete and rocks. Sel. Pap. Soil Mech. 1032, 4–16 (1984)

    Google Scholar 

  62. Studer, C.: Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-smooth Dynamics, vol. 47. Springer, Berlin (2009)

    MATH  Google Scholar 

  63. Suklje, L., Šuklje, L.: Rheological Aspects of Soil Mechanics. Wiley-Interscience, London (1969)

    MATH  Google Scholar 

  64. Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33(14), 2021–2054 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  65. Terzaghi, K.V.: The shearing resistance of saturated soils and the angle between the planes of shear. In: Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 54–56. Harvard University Press, Cambridge (1936)

    Google Scholar 

  66. Terzaghi, K.V.: Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, Abteilung IIa 132, 125–138 (1923)

    Google Scholar 

  67. Travascio, F., Asfour, S., Serpieri, R., Rosati, L.: Analysis of the consolidation problem of compressible porous media by a macroscopic variational continuum approach. Math. Mech. Solids. (2015). doi:10.1177/1081286515616049

  68. Travascio, F., Serpieri, R., Asfour, S.: Articular cartilage biomechanics modeled via an intrinsically compressible biphasic model: implications and deviations from an incompressible biphasic approach. In: ASME 2013 Summer Bioengineering Conference, pp. V01BT55A004–V01BT55A004. American Society of Mechanical Engineers (2013)

    Google Scholar 

  69. Truesdell, C.: Sulle basi della termodinamica delle miscele. Rend. Lincei 44(8), 381–383 (1968)

    Google Scholar 

  70. Wilmański, K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Media 32(1), 21–47 (1998)

    Article  Google Scholar 

  71. Wilmański, K.: On microstructural tests for poroelastic materials and corresponding Gassmann-type relations. Geotechnique 54(9), 593–603 (2004)

    Article  Google Scholar 

  72. Wriggers, P., Laursen, T.A.: Computational contact mechanics, vol. 498. Springer, Berlin (2006)

    Google Scholar 

  73. Yoon, Y.J., Cowin, S.C.: The elastic moduli estimation of the solid-water mixture. Int. J. Solids Struct. 46(3), 527–533 (2009)

    Article  MATH  Google Scholar 

  74. Youd, T., Idriss, I., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.L., Harder Jr., L.F., Hynes, M.E., et al.: Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 127, 817–833 (2001)

    Article  Google Scholar 

  75. Zienkiewicz, O.C., Chan, A., Pastor, M., Schrefler, B., Shiomi, T.: Computational Geomechanics. Wiley, Chichester (1999)

    MATH  Google Scholar 

  76. Zimmerman, R.W.: Compressibility of Sandstones. Elsevier, Amsterdam (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Serpieri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Serpieri, R., Travascio, F. (2017). Stress Partitioning in Two-Phase Media: Experiments and Remarks on Terzaghi’s Principle. In: Variational Continuum Multiphase Poroelasticity. Advanced Structured Materials, vol 67. Springer, Singapore. https://doi.org/10.1007/978-981-10-3452-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3452-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3451-0

  • Online ISBN: 978-981-10-3452-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics