Skip to main content

Carbonation Mechanisms and Modelling

  • Chapter
  • First Online:
Carbon Dioxide Mineralization and Utilization

Abstract

From the view point of reaction kinetics, many researchers have attributed the rate-determined step of aqueous carbonation to the reacted (product) layer diffusion. Therefore, this suggests that a well-designed reactor to enhance the mass transfer between the gas, liquid, and solid phases is needed to facilitate the carbonation reaction and increase the carbonation conversion. This chapter provides the principles and mechanisms of carbonation reaction using alkaline solid wastes. The kinetics of the major three steps of carbonation, i.e., metal ion leaching, CO2 dissolution, and carbonate precipitation, are illustrated. Moreover, several classical heterogeneous kinetic models, e.g., shrinking core model and surface coverage model, are presented. Furthermore, the modeling of mass transfer for carbonation in various reactors and/or processes is summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang M (2004) Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment. Powder Technol 142(2–3):166–174. doi:10.1016/j.powtec.2004.05.003

    Article  Google Scholar 

  2. Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37(7):1047–1058. doi:10.1016/j.cemconres.2007.04.002

    Article  Google Scholar 

  3. Montes-Hernandez G, Perez-Lopez R, Renard F, Nieto JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2–3):1347–1354. doi:10.1016/j.jhazmat.2008.04.104

    Article  Google Scholar 

  4. Tsuyoshi S, Etsuo S, Minoru M, Nobuaki O (2010) Carbonation of γ-Ca2SiO4 and the mechanism of vaterite formation. J Adv Concr Technol 8(3):273–280

    Article  Google Scholar 

  5. Pan S-Y, Chang EE, Chiang P-C (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791. doi:10.4209/aaqr.2012.06.0149

    Google Scholar 

  6. Fernandez Bertos M, Simons SJ, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112(3):193–205. doi:10.1016/j.jhazmat.2004.04.019

    Article  Google Scholar 

  7. Huntzinger DN, Gierke JS, Kawatra SK, Eisele TC, Sutter LL (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43(6):1986–1992

    Article  Google Scholar 

  8. Uibu M, Kuusik R (2009) Mineral trapping of CO2 via oil shale ash aqueous carbonation: controlling mechanism of process rate and development of continuous-flow reactor system. Oil Shale 26(1):40. doi:10.3176/oil.2009.1.06

    Article  Google Scholar 

  9. Huijgen WJJ, Ruijg GJ, Comans RNJ, Witkamp GJ (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind Eng Chem Res 45(26):9184–9194

    Article  Google Scholar 

  10. Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE (2013) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685. doi:10.1021/es403323x

    Article  Google Scholar 

  11. Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD (2008) Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall Mat Trans B 39(1):125–134. doi:10.1007/s11663-007-9112-8

    Article  Google Scholar 

  12. Costa G (2009) Accelerated carbonation of minerals and industrial residues for carbon dioxide storage. Università delgi Studi di Roma

    Google Scholar 

  13. Eloneva S, Said A, Fogelholm C-J, Zevenhoven R (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl Energy 90(1):329–334. doi:10.1016/j.apenergy.2011.05.045

    Article  Google Scholar 

  14. Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33(5):776–784. doi:10.1016/j.energy.2008.01.005

    Article  Google Scholar 

  15. Chang EE, Wang Y-C, Pan S-Y, Chen Y-H, Chiang P-C (2012) CO2 capture by using blended hydraulic slag cement via a slurry reactor. Aerosol Air Qual Res 12:1433–1443. doi:10.4209/aaqr.2012.08.0210

    Google Scholar 

  16. Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227–228:97–106. doi:10.1016/j.jhazmat.2012.05.021

    Article  Google Scholar 

  17. Pan SY, Liu HL, Chang EE, Kim H, Chen YH, Chiang PC (2016) Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor. Chemosphere 154:63–71. doi:10.1016/j.chemosphere.2016.03.093

    Article  Google Scholar 

  18. Zumdahl SS (2009) Chemical principles, 6th edn. Houghton Mifflin Company

    Google Scholar 

  19. Li X, Bertos MF, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manag 27(9):1200–1206. doi:10.1016/j.wasman.2006.06.011

    Article  Google Scholar 

  20. Fernandez Bertos M, Li X, Simons SJR, Hills CD, Carey PJ (2004) Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem 6(8):428. doi:10.1039/b401872a

    Article  Google Scholar 

  21. Chang EE, Pan S-Y, Chen Y-H, Chu H-W, Wang C-F, Chiang P-C (2011) CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195:107–114. doi:10.1016/j.jhazmat.2011.08.006

    Article  Google Scholar 

  22. Chang EE, Chen CH, Chen YH, Pan SY, Chiang PC (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564. doi:10.1016/j.jhazmat.2010.11.038

    Article  Google Scholar 

  23. Ishida T, Maekawa K (2000) Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory. In: Proceedings of JSCE, 2000

    Google Scholar 

  24. Druckenmiller ML, Maroto-Valer MM (2005) Carbon sequestration using brine of adjusted pH to form mineral carbonates. Fuel Process Technol 86(14–15):1599–1614. doi:10.1016/j.fuproc.2005.01.007

    Article  Google Scholar 

  25. Tai CY, Chen WR, Shih S-M (2006) Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE J 52(1):292–299. doi:10.1002/aic.10572

    Article  Google Scholar 

  26. Park A, Fan L (2004) Mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59(22–23):5241–5247. doi:10.1016/j.ces.2004.09.008

    Article  Google Scholar 

  27. Dijkstra JJ, Meeussen JCL, Comans RNJ (2004) Leaching of heavy metals from contaminated soils: an experimental and modeling study. Environ Sci Technol 38(16):4390–4395. doi:10.1021/es049885v

    Article  Google Scholar 

  28. De Windt L, Chaurand P, Rose J (2011) Kinetics of steel slag leaching: batch tests and modeling. Waste Manag 31(2):225–235. doi:10.1016/j.wasman.2010.05.018

    Article  Google Scholar 

  29. Iizuka A, Fujii M, Yamasaki A, Yanagisawa Y (2004) Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Ind Eng Chem Res 43(24):7880–7887. doi:10.1021/ie0496176

    Article  Google Scholar 

  30. Alexander G, Maroto-Valer MM, Aksoy P, Schobert H (2005) Development of a CO2 sequestration module by integrating mineral activation and aqueous carbonation. The Pennsylvania State University

    Google Scholar 

  31. Park AHA, Jadhav R, Fan LS (2003) CO2 mineral sequestration: chemically enhanced aqueous carbonation of serpentine. Can J Chem Eng 81(3–4):885–890

    Google Scholar 

  32. O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner Metall Proc 19(2):95–101

    Google Scholar 

  33. Santos A, Ajbary M, Morales-Florez V, Kherbeche A, Pinero M, Esquivias L (2009) Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation. J Hazard Mater 168(2–3):1397–1403. doi:10.1016/j.jhazmat.2009.03.026

    Article  Google Scholar 

  34. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley

    Google Scholar 

  35. Edsall JT, Wyman J (1958) Biophysical chemistry. Academic Press

    Google Scholar 

  36. Stumm W, Morgan JJ (1996) Aquatic chemistry. A Wiley-Interscience Publication, Wiley

    Google Scholar 

  37. Lagasa AC (1995) Fundamental approaches to describing mineral dissolution and precipitation rates. In: White AF, Brantley SL (eds) Reviews in mineralogy, vol 31. Mineralogical Society of America, Washington, D.C., pp 23–86

    Google Scholar 

  38. Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41(7):2587–2593

    Article  Google Scholar 

  39. Huijgen WJJ, Comans RNJ (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40(8):2790–2796

    Article  Google Scholar 

  40. Alexander G, Mercedesmarotovaler M, Gafarovaaksoy P (2007) Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel 86(1–2):273–281. doi:10.1016/j.fuel.2006.04.034

    Article  Google Scholar 

  41. Krevor SCM, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int J Greenhouse Gas Control 5(4):1073–1080. doi:10.1016/j.ijggc.2011.01.006

    Article  Google Scholar 

  42. Bhatia SK, Perlmutter DD (1983) Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J 29(1):79–86

    Article  Google Scholar 

  43. Liu W, Dennis JS, Sultan DS, Redfern SAT, Scott SA (2012) An investigation of the kinetics of CO2 uptake by a synthetic calcium based sorbent. Chem Eng Sci 69:644–658

    Article  Google Scholar 

  44. Pan S-Y, Chiang P-C, Chen Y-H, Tan C-S, Chang EE (2014) Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: maximization of carbonation conversion. Appl Energy 113:267–276. doi:10.1016/j.apenergy.2013.07.035

    Article  Google Scholar 

  45. Sohn HY, Szekely J (1973) Reactions between solids through gaseous intermediates—I reactions controlled by chemical kinetics. Chem Eng Sci 28:1789–1801

    Article  Google Scholar 

  46. Chang EE, Chiu A-C, Pan S-Y, Chen Y-H, Tan C-S, Chiang P-C (2013) Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor. Int J Greenhouse Gas Control 12:382–389. doi:10.1016/j.ijggc.2012.11.026

    Article  Google Scholar 

  47. Li X, Yang Z, Zhao J, Wang Y, Song R, He Y, Su Z, Lei T (2015) A modified shrinking core model for the reaction between acid and hetero-granular rough mineral particles. Hydrometallurgy 153:114–120. doi:10.1016/j.hydromet.2015.03.001

    Article  Google Scholar 

  48. Sohn HY (2004) The effects of reactant starvation and mass transfer in the rate measurement of fluid–solid reactions with small equilibrium constants. Chem Eng Sci 59(20):4361–4368. doi:10.1016/j.ces.2004.06.033

    Article  Google Scholar 

  49. Daval D, Martinez I, Corvisier J, Findling N, Goffé B, Guyot F (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem Geol 265(1–2):63–78. doi:10.1016/j.chemgeo.2009.01.022

    Article  Google Scholar 

  50. Chang EE, Pan SY, Yang L, Chen YH, Kim H, Chiang PC (2015) Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: performance evaluation and reaction kinetics. Waste Manag 43:283–292. doi:10.1016/j.wasman.2015.05.001

    Article  Google Scholar 

  51. Shih SM, Ho CS, Song YS, Lin JP (1999) Kinetics of the reaction of Ca(OH)(2) with CO2 at low temperature. Ind Eng Chem Res 38(4):1316–1322

    Article  Google Scholar 

  52. Arters DC, Fan L-S (1986) Experimental methods and correlation of solid liquid mass transfer in fluidized beds. Chem Eng Sci 41(1):107–115

    Article  Google Scholar 

  53. Versteeg GF, Swaalj WV (1988) Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J Chem Eng Data 33(1):29–34

    Article  Google Scholar 

  54. Frank MJW, Kuipers JAM, van Swaaij WPM (1996) Diffusion coefficients and viscosities of CO2 + H2O, CO2 + CH3OH, NH3 + H2O and NH3 + CH3OH liquid mixtures. J Chem Eng Data 41:297–302

    Article  Google Scholar 

  55. Chang EE, Chen T-L, Pan S-Y, Chen Y-H, Chiang P-C (2013) Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. J Hazard Mater 260:937–946. doi:10.1016/j.jhazmat.2013.06.052

    Article  Google Scholar 

  56. Munjal S, Dudukovic MP, Ramachandran P (1989) Mass-transfer in rotating packed beds—I. Dev Gas-Liquid Liquid-Solid Mass Transf Correl Chem Eng Sci 44(10):2245–2256

    Google Scholar 

  57. Cheng H-H, Tan C-S (2011) Removal of CO2 from indoor air by alkanolamine in a rotating packed bed. Sep Purif Technol 82:156–166. doi:10.1016/j.seppur.2011.09.004

    Article  Google Scholar 

  58. Tan C, Chen J (2006) Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Sep Purif Technol 49(2):174–180. doi:10.1016/j.seppur.2005.10.001

    Article  Google Scholar 

  59. Lin CC, Lin YH, Tan CS (2010) Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds. J Hazard Mater 175(1–3):344–351. doi:10.1016/j.jhazmat.2009.10.009

    Article  Google Scholar 

  60. Guo F, Zheng C, Guo K, Feng YD, Gardner NC (1997) Hydrodynamics and mass transfer in crossflow rotating packed bed. Chem Eng Sci 52(21–22):3853–3859

    Article  Google Scholar 

  61. Chen YS, Lin FY, Lin CC, Tai CYD, Liu HS (2006) Packing characteristics for mass transfer in a rotating packed bed. Ind Eng Chem Res 45(20):6846–6853

    Article  Google Scholar 

  62. Kelleher T, Fair JR (1996) Distillation studies in a high-gravity contactor. Ind Eng Chem Res 35:4646–4655

    Article  Google Scholar 

  63. Chen YH, Chang CY, Su WL, Chen CC, Chiu CY, Yu YH, Chiang PC, Chiang SIM (2004) Modeling ozone contacting process in a rotating packed bed. Ind Eng Chem Res 43(1):228–236

    Article  Google Scholar 

  64. Chen YH, Huang YH, Lin RH, Shang NC (2010) A continuous-flow biodiesel production process using a rotating packed bed. Bioresour Technol 101(2):668–673. doi:10.1016/j.biortech.2009.08.081

    Article  Google Scholar 

  65. Lin C, Chen B (2008) Characteristics of cross-flow rotating packed beds. J Ind Eng Chem 14(3):322–327. doi:10.1016/j.jiec.2008.01.004

    Article  Google Scholar 

  66. Chandra A, Goswami PS, Rao DP (2005) Characteristics of flow in a rotating packed bed (HIGEE) with split packing. Ind Eng Chem Res 44(11):4051–4060

    Article  Google Scholar 

  67. Pan SY, Chiang PC, Chen YH, Tan CS, Chang EE (2013) Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7):3308–3315. doi:10.1021/es304975y

    Google Scholar 

  68. Zhao B, Su Y, Tao W (2014) Mass transfer performance of CO2 capture in rotating packed bed: dimensionless modeling and intelligent prediction. Appl Energy 136:132–142. doi:10.1016/j.apenergy.2014.08.108

    Article  Google Scholar 

  69. Xiang Y, Wen LX, Chu GW, Shao L, Xiao GT, Chen JF (2010) Modeling of the precipitation process in a rotating packed bed and its experimental validation. Chin J Chem Eng 18(2):249–257

    Article  Google Scholar 

  70. Liu H, Kuo C (1996) Quantitative multiphase determination using the Rietveld method with high accuracy. Mater Lett 26:171–175

    Article  Google Scholar 

  71. Sandilya P, Rao DP, Sharma A (2001) Gas-phase mass transfer in a centrifugal contactor. Ind Eng Chem Res 40:384–392

    Article  Google Scholar 

  72. Cheng H-H, Shen J-F, Tan C-S (2010) CO2 capture from hot stove gas in steel making process. Int J greenhouse gas control 4(3):525–531. doi:10.1016/j.ijggc.2009.12.006

    Article  Google Scholar 

  73. Tung HH, Mah RSH (1985) Modeling liquid mass transfer in HIGEE separation process. Chem Eng Commun 39:147–153

    Article  Google Scholar 

  74. Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn 1(1):56–62

    Article  Google Scholar 

  75. Perry RH, Chilton CH (1973) Chemical engineers’ handbook. McGraw-Hill, New York. doi:10.1002/aic.690200140

  76. Pan SY, Eleazar EG, Chang EE, Lin YP, Kim H, Chiang PC (2015) Systematic approach to determination of optimum gas-phase mass transfer rate for high-gravity carbonation process of steelmaking slags in a rotating packed bed. Appl Energy 148:23–31. doi:10.1016/j.apenergy.2015.03.047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). Carbonation Mechanisms and Modelling. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_7

Download citation

Publish with us

Policies and ethics