Skip to main content

CO2 Mineralization and Utilization via Accelerated Carbonation

  • Chapter
  • First Online:
Carbon Dioxide Mineralization and Utilization

Abstract

In recent years, CO2 emission control in a large-scaled industrial process has also drawn lots of attention due to climate change and global warming issues. For instance, to establish a sustainable resource cycle, an integrated multiwaste treatment via carbonation process has been proposed using CO2 in flue gas as a chemical to stabilize active components in alkaline solid wastes. In this chapter, the basic information regarding CO2 and carbon-related species is illustrated in terms of thermodynamics and process chemistry. In addition, the types of CO2 mineralization via carbonation are summarized and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cubasch U, Wuebbles D, Chen D, Facchini MC, Frame D, Mahowald N, Winther J-G (2013) Introduction. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  2. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  3. Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  4. Pan S-Y, Chiang A, Chang E-E, Lin Y-P, Kim H, Chiang P-C (2015) An innovative approach to integrated carbon mineralization and waste utilization: A review. Aerosol Air Qual Res 15:1072–1091. doi:10.4209/aaqr.2014.10.02

    Google Scholar 

  5. Klemeš J, Cockerill T, Bulatov I, Shackley S, Gough C (2007) Engineering feasibility of carbon dioxide capture and storage. In: Shackley S, Gough C (eds) Carbon capture and its storage: an integrated assessment. Ashgate, England

    Google Scholar 

  6. Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678

    Article  Google Scholar 

  7. Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41(7):2587–2593

    Article  Google Scholar 

  8. Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy Env 27(1):193–232. doi:10.1146/annurev.energy.27.122001.083433

    Article  Google Scholar 

  9. IEA (2013) Mineralisation—carbonation and enhanced weathering. International Energy Agency

    Google Scholar 

  10. Pan S-Y, Chang EE, Chiang P-C (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791. doi:10.4209/aaqr.2012.06.0149

    Google Scholar 

  11. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080. doi:10.1039/c4cs00035h

    Article  Google Scholar 

  12. Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. In: The National Academy of Sciences of the United States of America, pp 17295–17300

    Google Scholar 

  13. Muriithi GN, Petrik LF, Fatoba O, Gitari WM, Doucet FJ, Nel J, Nyale SM, Chuks PE (2013) Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. J Environ Manage 127:212–220. doi:10.1016/j.jenvman.2013.05.027

    Article  Google Scholar 

  14. Pan SY, Chiang PC, Chen YH, Tan CS, Chang EE (2013) Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7):3308–3315. doi:10.1021/es304975y

    Google Scholar 

  15. Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Petrol Sci Eng 109:364–392. doi:10.1016/j.petrol.2013.03.013

    Article  Google Scholar 

  16. Eloneva S, Said A, Fogelholm C-J, Zevenhoven R (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl Energy 90(1):329–334. doi:10.1016/j.apenergy.2011.05.045

    Article  Google Scholar 

  17. Nduagu E, Romão I, Fagerlund J, Zevenhoven R (2013) Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration. Appl Energy 106:116–126. doi:10.1016/j.apenergy.2013.01.049

    Article  Google Scholar 

  18. Pan S-Y, Chiang P-C, Chen Y-H, Tan C-S, Chang EE (2014) Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: maximization of carbonation conversion. Appl Energy 113:267–276. doi:10.1016/j.apenergy.2013.07.035

    Article  Google Scholar 

  19. Said A, Mattila HP, Jarvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771. doi:10.1016/j.apenergy.2012.12.042

    Article  Google Scholar 

  20. Sanna A, Dri M, Hall MR, Maroto-Valer M (2012) Waste materials for carbon capture and storage by mineralisation (CCSM)—A UK perspective. Appl Energy 99:545–554. doi:10.1016/j.apenergy.2012.06.049

    Article  Google Scholar 

  21. Teir S, Eloneva S, Fogelholm C, Zevenhoven R (2009) Fixation of carbon dioxide by producing hydromagnesite from serpentinite. Appl Energy 86(2):214–218. doi:10.1016/j.apenergy.2008.03.013

    Article  Google Scholar 

  22. Renforth P, Washbourne CL, Taylder J, Manning DA (2011) Silicate production and availability for mineral carbonation. Environ Sci Technol 45(6):2035–2041. doi:10.1021/es103241w

    Article  Google Scholar 

  23. Huntzinger DN, Gierke JS, Kawatra SK, Eisele TC, Sutter LL (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43(6):1986–1992

    Article  Google Scholar 

  24. Gunning PJ (2011) Accelerated carbonation of hazardous waste. University of Greenwich, UK

    Google Scholar 

  25. Lim M, Han GC, Ahn JW, You KS (2010) Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology. Int J Environ Res Public Health 7(1):203–228. doi:10.3390/ijerph7010203

    Article  Google Scholar 

  26. Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M (2009) Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. Int J Greenhouse Gas Control 3(1):20–28. doi:10.1016/j.ijggc.2008.06.001

    Article  Google Scholar 

  27. Monkman S, Shao Y, Shi C (2009) Carbonated ladle slag fines for carbon uptake and sand substitute. J Mater Civ Eng 21:657–665. doi:10.1061//asce/0899-1561/2009/21:11/657

    Article  Google Scholar 

  28. Ukwattage NL, Ranjith PG, Yellishetty M, Bui HH, Xu T (2014) A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod. doi:10.1016/j.jclepro.2014.03.005

    Google Scholar 

  29. Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227–228:97–106. doi:10.1016/j.jhazmat.2012.05.021

    Article  Google Scholar 

  30. Chang EE, Wang Y-C, Pan S-Y, Chen Y-H, Chiang P-C (2012) CO2 capture by using blended hydraulic slag cement via a slurry reactor. Aerosol Air Qual Res 12:1433–1443. doi:10.4209/aaqr.2012.08.0210

    Google Scholar 

  31. Jo H, Park S-H, Jang Y-N, Chae S-C, Lee P-K, Jo HY (2014) Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions. Chem Eng J 254:313–323. doi:10.1016/j.cej.2014.05.129

    Article  Google Scholar 

  32. Noack CW, Dzombak DA, Nakles DV, Hawthorne SB, Heebink LV, Dando N, Gershenzon M, Ghosh RS (2014) Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study. Waste Manag. doi:10.1016/j.wasman.2014.03.009

    Google Scholar 

  33. Jung S, Wang LP, Dodbiba G, Fujita T (2014) Two-step accelerated mineral carbonation and decomposition analysis for the reduction of CO(2) emission in the eco-industrial parks. J Environ Sci (China) 26(7):1411–1422. doi:10.1016/j.jes.2014.05.006

    Article  Google Scholar 

  34. Dri M, Sanna A, Maroto-Valer MM (2014) Mineral carbonation from metal wastes: effect of solid to liquid ratio on the efficiency and characterization of carbonated products. Appl Energy 113:515–523. doi:10.1016/j.apenergy.2013.07.064

    Article  Google Scholar 

  35. Dri M, Sanna A, Maroto-Valer MM (2013) Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process Technol 113:114–122. doi:10.1016/j.fuproc.2013.03.034

    Article  Google Scholar 

  36. Azdarpour A, Asadullah M, Junin R, Manan M, Hamidi H, Mohammadian E (2014) Direct carbonation of red gypsum to produce solid carbonates. Fuel Process Technol 126:429–434. doi:10.1016/j.fuproc.2014.05.028

    Article  Google Scholar 

  37. Santos RM, Van Bouwel J, Vandevelde E, Mertens G, Elsen J, Van Gerven T (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenhouse Gas Control 17:32–45. doi:10.1016/j.ijggc.2013.04.004

    Article  Google Scholar 

  38. Chang EE, Chen T-L, Pan S-Y, Chen Y-H, Chiang P-C (2013) Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. J Hazard Mater 260:937–946. doi:10.1016/j.jhazmat.2013.06.052

    Article  Google Scholar 

  39. Fernandez Bertos M, Li X, Simons SJR, Hills CD, Carey PJ (2004) Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem 6(8):428. doi:10.1039/b401872a

    Article  Google Scholar 

  40. Tsuyoshi S, Etsuo S, Minoru M, Nobuaki O (2010) Carbonation of γ-Ca2SiO4 and the mechanism of vaterite formation. J Adv Concr Technol 8(3):273–280

    Article  Google Scholar 

  41. Cappai G, Cara S, Muntoni A, Piredda M (2012) Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration. J Hazard Mater 207–208:159–164. doi:10.1016/j.jhazmat.2011.04.013

    Article  Google Scholar 

  42. Fernandez Bertos M, Simons SJ, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112(3):193–205. doi:10.1016/j.jhazmat.2004.04.019

    Article  Google Scholar 

  43. Arickx S, Van Gerven T, Vandecasteele C (2006) Accelerated carbonation for treatment of MSWI bottom ash. J Hazard Mater 137(1):235–243. doi:10.1016/j.jhazmat.2006.01.059

    Article  Google Scholar 

  44. Santos RM, Mertens G, Salman M, Cizer O, Van Gerven T (2013) Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J Environ Manage 128:807–821. doi:10.1016/j.jenvman.2013.06.033

    Article  Google Scholar 

  45. Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater 128(1):73–79. doi:10.1016/j.jhazmat.2005.07.033

    Article  Google Scholar 

  46. Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE (2013) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685. doi:10.1021/es403323x

    Article  Google Scholar 

  47. Huijgen WJJ, Ruijg GJ, Comans RNJ, Witkamp GJ (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind Eng Chem Res 45(26):9184–9194

    Article  Google Scholar 

  48. Huijgen W, Comans R, Witkamp G (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48(7):1923–1935. doi:10.1016/j.enconman.2007.01.035

    Article  Google Scholar 

  49. Pan SY, Chen YH, Chen CD, Shen AL, Lin M, Chiang PC (2015) High-gravity carbonation process for enhancing CO2 fixation and utilization exemplified by the steelmaking industry. Environ Sci Technol 49(20):12380–12387. doi:10.1021/acs.est.5b02210

    Article  Google Scholar 

  50. Pan S-Y, Lorente Lafuente AM, Chiang P-C (2016) Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization. Appl Energy 170:269–277. doi:10.1016/j.apenergy.2016.02.103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). CO2 Mineralization and Utilization via Accelerated Carbonation. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_3

Download citation

Publish with us

Policies and ethics