Skip to main content

Supplementary Cementitious Materials (SCMs) in Cement Mortar

  • Chapter
  • First Online:
Carbon Dioxide Mineralization and Utilization
  • 1733 Accesses

Abstract

In this chapter, the performance of the blended cement mortar with carbonated solid wastes, including physico-chemical properties, morphology, mineralogy, compressive strength, and autoclave soundness, is illustrated. The specification of performance testing for constriction materials with carbonated solid waste is also provided. In general, a high carbonation conversion of solid waste exhibits a higher mechanical strength in the early stage than pure Portland cement mortar. Moreover, the mortar with carbonated solid waste generally possesses superior soundness to the mortar using fresh solid waste. Since the chemistry of the cement hydrations is complicated and has not been completely clear, the principles and mechanisms of performance enhancement due to the use of carbonated waste in blended cement system are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crossin E (2015) The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J Clean Prod 95:101–108. doi:10.1016/j.jclepro.2015.02.082

    Article  Google Scholar 

  2. Mo L, Zhang F, Deng M (2015) Effects of carbonation treatment on the properties of hydrated fly ash-MgO-Portland cement blends. Constr Build Mater 96:147–154. doi:10.1016/j.conbuildmat.2015.07.193

    Article  Google Scholar 

  3. Chusilp N, Jaturapitakkul C, Kiattikomol K (2009) Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr Build Mater 23(12):3523–3531. doi:10.1016/j.conbuildmat.2009.06.046

    Article  Google Scholar 

  4. Caldarone MA, Taylor PC, Detwiler RJ, Bhidé SB (2005) Guide specification for high performance concrete for bridges, 1st edn. Portland Cement Association, Canada

    Google Scholar 

  5. Paris JM, Roessler JG, Ferraro CC, DeFord HD, Townsend TG (2016) A review of waste products utilized as supplements to Portland cement in concrete. J Clean Prod 121:1–18. doi:10.1016/j.jclepro.2016.02.013

    Article  Google Scholar 

  6. Wilson ML, Kosmatka SH (2011) Design and control of concrete mixtures. In: High-performance concrete, 15th edn. Portland Cement Association, Washington, DC, p 299

    Google Scholar 

  7. Zhang T, Yu Q, Wei J, Li J, Zhang P (2011) Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl 56(1):48–55. doi:10.1016/j.resconrec.2011.09.003

    Article  Google Scholar 

  8. Monkman S, Shao Y, Shi C (2009) Carbonated ladle slag fines for carbon uptake and sand substitute. J Mater Civ Eng 21:657–665. doi:10.1061//asce/0899-1561/2009/21:11/657

    Article  Google Scholar 

  9. Wu HZ, Chang J, Pan ZZ, Cheng X (2009) Carbonate steelmaking slag to manufacture building materials. Adv Mater Res 79–82:1943–1946. doi:10.4028/www.scientific.net/AMR.79-82.1943

    Article  Google Scholar 

  10. Pan S-Y, Chang EE, Chiang P-C (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791. doi:10.4209/aaqr.2012.06.0149

    Google Scholar 

  11. Pan S-Y, Chiang A, Chang E-E, Lin Y-P, Kim H, Chiang P-C (2015) An innovative approach to integrated carbon mineralization and waste utilization: A review. Aerosol Air Qual Res 15:1072–1091. doi:10.4209/aaqr.2014.10.02

    Google Scholar 

  12. Pan SY, Chen YH, Chen CD, Shen AL, Lin M, Chiang PC (2015) High-gravity carbonation process for enhancing CO2 fixation and utilization exemplified by the steelmaking industry. Environ Sci Technol 49(20):12380–12387. doi:10.1021/acs.est.5b02210

    Article  Google Scholar 

  13. Pan S-Y, Hung C-H, Chan Y-W, Kim H, Li P, Chiang P-C (2016) Integrated CO2 fixation, waste stabilization, and product utilization via high-gravity carbonation process exemplified by circular fluidized bed fly ash. ACS Sustain Chem Eng 4(6):3045–3052. doi:10.1021/acssuschemeng.6b00014

    Article  Google Scholar 

  14. Taylor GD (1991) Construction materials. Longman Group, UK

    Google Scholar 

  15. ASTM C 595/C 595 M-15 (2015) Standard specification for blended hydraulic cements. Annual Book of ASTM Standards. ASTM American Society for Testing and Materials, West Conshohochen, PA

    Google Scholar 

  16. CNS 3590-1988 (1988) Method of test for normal consisteney of hydraulic cement. Chinese National Standards, Taiwan (ROC)

    Google Scholar 

  17. CNS 786-1983 (1983) Method of test for time of setting of hydraulic cement by vicat needle. Chinese National Standards, Taiwan (ROC)

    Google Scholar 

  18. CNS 61-R2001 (2011) Portland cement. Chinese National Standards, Taiwan (ROC)

    Google Scholar 

  19. Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manag 21:285–293

    Article  Google Scholar 

  20. Neville AM (2002) Properties of concrete. Pitman Pub

    Google Scholar 

  21. Gao JP (2008) Steel slag stability test method-the key technologies of steel slag used in the building materials domain. Metall Stand Qual (in Chinese) 46(6):25–29

    Google Scholar 

  22. Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801. doi:10.1016/j.proenv.2012.10.108

    Article  Google Scholar 

  23. Ogawa S, Nozaki T, Yamada K, Hirao H, Hooton RD (2012) Improvement on sulfate resistance of blended cement with high alumina slag. Cem Concr Res 42(2):244–251. doi:10.1016/j.cemconres.2011.09.008

    Article  Google Scholar 

  24. Hoshino S, Yamada K, Hirao H (2007) XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. J Adv Concr Technol 4(3):357–367

    Article  Google Scholar 

  25. Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z (2007) Properties and hydration of blended cements with steelmaking slag. Cem Concr Res 37(6):815–822. doi:10.1016/j.cemconres.2007.03.008

    Article  Google Scholar 

  26. C150/C150 M A (2015) Standard specification for portland cement. Annual book of ASTM standards. ASTM American Society for Testing and Materials, New York

    Google Scholar 

  27. Justnes H (2012) Alternative low-CO2 “Green” clinkering processes. In: Broekmans MATM, Pollmann H (eds) Reivews in mineralogy & geochemistry, vol 74., Applied mineralogy of cement & concreteMinerological Society of America Virginia, USA, pp 83–99

    Google Scholar 

  28. Rajput RK (2007) Cement. In: Engineering material. S. Chand & Company Ltd., Delhi

    Google Scholar 

  29. Magistri M, Recchi P, Forni P (2015) Optimization in the use if cement additives: effect of gypsum dehydration on the reactivity of performance enhancers. Mapei SpA, Italy

    Google Scholar 

  30. Harrigan ET (2013) Measuring cement particle size and surface area by laser diffraction. Research results digest. National Cooperative Highway Research Program

    Google Scholar 

  31. Shi CJ, Qian JS (2000) High performance cementing materials from industrial slags—a review. Resour Conserv Recy 29(3):195–207

    Article  Google Scholar 

  32. Birat J-P (2009) Steel and CO2—the ULCOS program, CCS and mineral carbonation using steelmaking slag. In: 1st International Slag Valorisation Symposium, Leuven

    Google Scholar 

  33. ASTM C 311-11b (2011) Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete. Annual Book of ASTM Standards. ASTM American Society for Testing and Materials, West Conshohochen, PA

    Google Scholar 

  34. ASTM C 618 (2001) Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. Annual Book of ASTM standards, vol ASTM C 618-2001. ASTM American Society for Testing and Materials, West Conshohochen, PA

    Google Scholar 

  35. Kurdiwski W (2014) Cement and concrete chemistry. Springer, New York London. doi:10.1007/978-94-007-7945-7

  36. Hawkins P, Tennis P, Detwiler R (2003) The use of limestone in portland: a state-of-the-art review. Portland Cement Association, USA

    Google Scholar 

  37. Luz AP, Pandolfelli VC (2012) CaCO3 addition effect on the hydration and mechanical strength evolution of calcium aluminate cement for endodontic applications. Ceram Int 38(2):1417–1425. doi:10.1016/j.ceramint.2011.09.021

    Article  Google Scholar 

  38. NIEA R201.14C (2009) Toxicity characteristic leaching procedure. vol 0980070269. Environmental Analysis Laboratory, EPA, Taiwan (ROC)

    Google Scholar 

  39. USEPA (1992) Test methods for evaluating solid waste, Physical/Chemical Methods. Government Printing Office, Washington, DC, USA

    Google Scholar 

  40. Bentz DP, Sato T, De la Varga I, Weiss WJ (2012) Fine limestone additions to regulate setting in high volume fly ash mixtures. Cement Concr Compos 34(1):11–17

    Article  Google Scholar 

  41. Bentz DP (2014) Activation energies of high-volume fly ash ternary blends: hydration and setting. Cement Concr Compos 53:214–223

    Article  Google Scholar 

  42. Bentz DP, Ardani A, Barrett T, Jones SZ, Lootens D, Peltz MA, Sato T, Stutzman PE, Tanesi J, Weiss WJ (2015) Multi-scale investigation of the performance of limestone in concrete. Constr Build Mater 75:1–10

    Article  Google Scholar 

  43. Gurney LR, Bentz DP, Sato T, Weiss WJ (2012) Reducing set retardation in high-volume fly ash mixtures with the use of limestone. Transp Res Record: J Transp Res Board 2290(1):139–146

    Article  Google Scholar 

  44. Pang B, Zhou Z, Xu H (2015) Utilization of carbonated and granulated steel slag aggregate in concrete. Constr Build Mater 84:454–467

    Article  Google Scholar 

  45. Liang XJ, Ye ZM, Chang J (2012) Early hydration activity of composite with carbonated steel slag. J Chin Ceram Soc (in Chinese) 40(2):228–233

    Google Scholar 

  46. Zajac M, Rossberg A, Le Saout G, Lothenbach B (2014) Influence of limestone and anhydrite on the hydration of Portland cements. Cement Concr Compos 46:99–108. doi:10.1016/j.cemconcomp.2013.11.007

    Article  Google Scholar 

  47. ASTM C 39 (2001) Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards. ASTM American Society for Testing and Materials, West Conshohochen, PA, USA

    Google Scholar 

  48. Tan Z (2012) Chemical reaction of limestone with C3S and C3A

    Google Scholar 

  49. Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38:848–860. doi:10.1016/j.cemconres.2008.01.002

    Article  Google Scholar 

  50. Thongsanitgarn P, Wongkeo W, Chaipanich A, Poon CS (2014) Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: effect of limestone particle size. Constr Build Mater 66:410–417. doi:10.1016/j.conbuildmat.2014.05.060

    Article  Google Scholar 

  51. Chi J, Huang R, Yang C (2002) Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method. J Mar Sci Technol 10:14–20

    Google Scholar 

  52. Wu HZ, Chang J, Pan ZZ, Cheng X (2011) Effects of carbonation on steel slag products. Adv Mater Res 177:485–488. doi:10.4028/www.scientific.net/AMR.177.485

    Article  Google Scholar 

  53. Stark J, Freyburg E, Lohmer K Investigation into the influence of limestone additions to portland cement clinker phases on the early phase of hydration. In: Dhir RK, Dyer TD (eds) International conference on modern concrete materials: binders, additions and admixtures, London, 1999. Thomas Telford

    Google Scholar 

  54. Fernandez Bertos M, Simons SJ, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112(3):193–205. doi:10.1016/j.jhazmat.2004.04.019

    Article  Google Scholar 

  55. Haecker C-J, Garboczi E, Bullard J, Bohn R, Sun Z, Shah S (2005) Modeling the linear elastic properties of Portland cement paste. Cem Concr Res 35:1948–1960

    Article  Google Scholar 

  56. Mahoutian M, Shao Y, Mucci A, Fournier B (2014) Carbonation and hydration behavior of EAF and BOF steel slag binders. Mater Struct 48:3075–3085

    Article  Google Scholar 

  57. Matschei T, Glasser FP (2010) Temperature dependence, 0 to 40 °C, of the mineralogy of Portland cement paste in the presence of calcium carbonate. Cem Concr Res 40(5):763–777. doi:10.1016/j.cemconres.2009.11.010

    Article  Google Scholar 

  58. Bentz DP, Jones SZ, Peltz MA, Stutzman PE (2015) Influence of internal curing on properties and performance of cement-based repair materials. Nat Inst Stan Technol. doi:10.6028/nist.ir.8076

    Google Scholar 

  59. Kurdowski W (2014) Cement hydration. In: Cement and concrete chemistry. Springer, New York. doi:10.1007/978-94-007-7945-7_4

  60. Setién J, Hernández D, González JJ (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr Build Mater 23:1788–1794. doi:10.1016/j.conbuildmat.2008.10.003

    Article  Google Scholar 

  61. Wu HC, Zhou H, Ding L, Tan WJ, Liu M, Chang J (2010) Performance evaluation of carbonated steel slag blended with cement. Cement 2:6–9

    Google Scholar 

  62. Rashad AM, Seleem HEDH (2014) A study on high strength concrete with moderate cement content incorporating limestone powder. Build Res J 61(1):43–58. doi:10.2478/brj-2014-0004

    Google Scholar 

  63. Martin LHJ, Winnefeld F, Müller CJ, Lothenbach B (2015) Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cement Concr Compos 62:204–211. doi:10.1016/j.cemconcomp.2015.07.005

    Article  Google Scholar 

  64. Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE (2013) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685. doi:10.1021/es403323x

    Article  Google Scholar 

  65. Santos RM, Van Bouwel J, Vandevelde E, Mertens G, Elsen J, Van Gerven T (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenhouse Gas Control 17:32–45. doi:10.1016/j.ijggc.2013.04.004

    Article  Google Scholar 

  66. Tian B, Cohen MD (2000) Does gypsum formation during sulfate attack on concrete lead to expansion? Cem Concr Res 30:117–123

    Article  Google Scholar 

  67. Hossack AM, Thomas MDA (2015) Varying fly ash and slag contents in Portland limestone cement mortars exposed to external sulfates. Constr Build Mater 78:333–341. doi:10.1016/j.conbuildmat.2015.01.030

    Article  Google Scholar 

  68. Bodor M, Santos RM, Cristea G, Salman M, Cizer Ö, Iacobescu RI, Chiang YW, van Balen K, Vlad M, van Gerven T (2016) Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cement Concr Compos 65:55–66. doi:10.1016/j.cemconcomp.2015.10.002

    Article  Google Scholar 

  69. Zhang T, Yu Q, Wei J, Zhang P (2011) A new gap-graded particle size distribution and resulting consequences on properties of blended cement. Cement Concr Compos 33(5):543–550. doi:10.1016/j.cemconcomp.2011.02.013

    Article  Google Scholar 

  70. Zhang T, Yu Q, Wei J, Zhang P, Chen P (2011) A gap-graded particle size distribution for blended cements: Analytical approach and experimental validation. Powder Technol 214(2):259–268. doi:10.1016/j.powtec.2011.08.018

    Article  Google Scholar 

  71. Zhang T, Gao P, Luo R, Wei J, Yu Q (2014) Volumetric deformation of gap-graded blended cement pastes with large amount of supplementary cementitious materials. Constr Build Mater 54:339–347. doi:10.1016/j.conbuildmat.2013.12.053

    Article  Google Scholar 

  72. Arora A, Sant G, Neithalath N (2016) Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure. Constr Build Mater 102:113–124. doi:10.1016/j.conbuildmat.2015.10.179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). Supplementary Cementitious Materials (SCMs) in Cement Mortar. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_15

Download citation

Publish with us

Policies and ethics