Skip to main content

Utilization of Carbonation Products

  • Chapter
  • First Online:
Carbon Dioxide Mineralization and Utilization

Abstract

Large-scale utilization of alkaline solid wastes provides a solution to the environmental problems associated with waste dumping, as well as energy and material conservation. However, conventional uses of alkaline solid wastes have encountered several technological barriers, including fatal volume expansion, heavy metal leaching, and low cementitious property of slag. To overcome these barriers of alkaline solid wastes utilization, an accelerated carbonation process is proposed and reviewed in terms of theoretical perspectives and practical considerations. In this chapter, the deployment of accelerated carbonation technologies for simultaneous CO2 capture and solid waste stabilization is discussed to overcome the barriers, from the perspectives of engineering performance and environmental benefits. The strengths and opportunities of utilizing the carbonate product are comprehensively reviewed in terms of theoretical and practical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed ZT, Hand DW (2015) Direct adsorption isotherms of AEAs and fly ash: α-olefin sulfonate and combination admixtures. ACS Sustain Chem Eng 3(2):216–223. doi:10.1021/sc500697x

    Article  Google Scholar 

  2. Mo L, Zhang F, Deng M (2015) Effects of carbonation treatment on the properties of hydrated fly ash-MgO-portland cement blends. Constr Build Mater 96:147–154. doi:10.1016/j.conbuildmat.2015.07.193

    Article  Google Scholar 

  3. Yan F, Jiang J, Li K, Tian S, Zhao M, Chen X (2015) Performance of coal fly ash stabilized, CaO-based sorbents under different carbonation-calcination conditions. ACS Sustain Chem Eng 3(9):2092–2099. doi:10.1021/acssuschemeng.5b00355

    Article  Google Scholar 

  4. Sengupta S, Ray D, Mukhopadhyay A (2013) Sustainable materials: value-added composites from recycled polypropylene and fly ash using a green coupling agent. ACS Sustain Chem Eng 1(6):574–584. doi:10.1021/sc3000948

    Article  Google Scholar 

  5. Tsiridis V, Petala M, Samaras P, Sakellaropoulos GP (2015) Evaluation of interactions between soil and coal fly ash leachates using column percolation tests. Waste Manag 43:255–263. doi:10.1016/j.wasman.2015.05.031

    Article  Google Scholar 

  6. Sharma R, Shaw R, Tiwari S, Tiwari S (2015) Nano-titania decorated fly ash as self-cleaning antibacterial cool pigment. ACS Sustain Chem Eng 3(11):2796–2803. doi:10.1021/acssuschemeng.5b00692

    Article  Google Scholar 

  7. Huang X, Huang T, Li S, Muhammad F, Xu G, Zhao Z, Yu L, Yan Y, Li D, Jiao B (2016) Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram Int 42(8):9538–9549. doi:10.1016/j.ceramint.2016.03.033

    Article  Google Scholar 

  8. Perná I, Hanzlíček T (2016) The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method. J Clean Prod 112:1150–1155. doi:10.1016/j.jclepro.2015.05.069

    Article  Google Scholar 

  9. Oyamada K, Okamoto M, Iwata I (2014) Development of restoration technology for coral reefs using “marine blockTM”. JFE Technical Report. JFE Steel Corporation, Japan

    Google Scholar 

  10. Qin J, Cui C, Cui X, Hussain A, Yang C (2015) Preparation and characterization of ceramsite from lime mud and coal fly ash. Constr Build Mater 95:10–17. doi:10.1016/j.conbuildmat.2015.07.106

    Article  Google Scholar 

  11. Bai J, Li Y, Ren L, Mao M, Zeng M, Zhao X (2015) Thermal insulation monolith of aluminum tobermorite nanosheets prepared from fly ash. ACS Sustain Chem Eng 3(11):2866–2873. doi:10.1021/acssuschemeng.5b00808

    Article  Google Scholar 

  12. De Windt L, Chaurand P, Rose J (2011) Kinetics of steel slag leaching: batch tests and modeling. Waste Manag 31(2):225–235. doi:10.1016/j.wasman.2010.05.018

    Article  Google Scholar 

  13. Huijgen WJJ, Ruijg GJ, Comans RNJ, Witkamp GJ (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind Eng Chem Res 45(26):9184–9194

    Article  Google Scholar 

  14. Eloneva S, Teir S, Revitzer H, Salminen J, Said A, Fogelholm CJ, Zevenhoven R (2009) Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Steel Res Int 80(6):415–421

    Google Scholar 

  15. Li X, Bertos MF, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manag 27(9):1200–1206. doi:10.1016/j.wasman.2006.06.011

    Article  Google Scholar 

  16. Wang L, Jin Y, Nie Y (2010) Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca. J Hazard Mater 174(1–3):334–343. doi:10.1016/j.jhazmat.2009.09.055

    Article  Google Scholar 

  17. Arickx S, Van Gerven T, Vandecasteele C (2006) Accelerated carbonation for treatment of MSWI bottom ash. J Hazard Mater 137(1):235–243. doi:10.1016/j.jhazmat.2006.01.059

    Article  Google Scholar 

  18. Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater 128(1):73–79. doi:10.1016/j.jhazmat.2005.07.033

    Article  Google Scholar 

  19. Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC (2009) Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168(1):31–37. doi:10.1016/j.jhazmat.2009.01.122

    Article  Google Scholar 

  20. Huntzinger DN, Gierke JS, Kawatra SK, Eisele TC, Sutter LL (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43(6):1986–1992

    Article  Google Scholar 

  21. Meng H, Liu L (2000) Stability processing technology and application prospect of steel slag. Steelmaking 25(6):74–78

    Google Scholar 

  22. Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801. doi:10.1016/j.proenv.2012.10.108

    Article  Google Scholar 

  23. Qi G, Yue D, Fukushima M, Fukuchi S, Nishimoto R, Nie Y (2012) Enhanced humification by carbonated basic oxygen furnace steel slag–II. Process characterization and the role of inorganic components in the formation of humic-like substances. Bioresour Technol 114:637–643. doi:10.1016/j.biortech.2012.03.064

    Article  Google Scholar 

  24. Chiang Y-W, Santos RM, Elsen J, Meesschaert B, Martens JA, Van Gerven T (2013) Two-way valorization of blast furnace slag into precipitated calcium carbonate and sorbent materials. Paper presented at the Accelerated Carbonation for Environmental and Material Engineering. KU Leuven, Belgium

    Google Scholar 

  25. Chiou CS, Chang CF, Chang CT, Shie JL, Chen YH (2006) Mineralization of reactive black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide. Chemosphere 62(5):788–795. doi:10.1016/j.chemosphere.2005.04.072

    Article  Google Scholar 

  26. Arribas I, Santamaría A, Ruiz E, Ortega-López V, Manso JM (2015) Electric arc furnace slag and its use in hydraulic concrete. Constr Build Mater 90:68–79. doi:10.1016/j.conbuildmat.2015.05.003

    Article  Google Scholar 

  27. Frı́as Rojas M, Sánchez de Rojas MI, Urı́a A (2002) Study of the instability of black slags from electric arc furnace steel industry. Mater Constr 267(52):79–83

    Google Scholar 

  28. Juckes LM (2003) The volume stability of modern steelmaking slags. Miner Process Extr Metall 112(3):117–197

    Article  Google Scholar 

  29. Shi C, Qian J (2000) High performance cementing materials from industrial slags - a review. Resour Conserv Recy 29(3):195–207

    Article  Google Scholar 

  30. Tian B, Cohen MD (2000) Does gypsum formation during sulfate attack on concrete lead to expansion? Cem Concr Res 30:117–123

    Google Scholar 

  31. Bodor M, Santos RM, Cristea G, Salman M, Cizer Ö, Iacobescu RI, Chiang YW, van Balen K, Vlad M, van Gerven T (2016) Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cement Concr Compos 65:55–66. doi:10.1016/j.cemconcomp.2015.10.002

    Article  Google Scholar 

  32. Mombelli D, Mapelli C, Barella S, Di Cecca C, Le Saout G, Garcia-Diaz E (2016) The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J Environ Chem Eng 4(1):1050–1060. doi:10.1016/j.jece.2015.09.018

    Article  Google Scholar 

  33. Yang R, Liao WP, Wu PH (2012) Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. J Environ Manage 104:67–76. doi:10.1016/j.jenvman.2012.03.008

    Article  Google Scholar 

  34. Arickx S, De Borger V, Van Gerven T, Vandecasteele C (2010) Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash. Waste Manag 30(7):1296–1302. doi:10.1016/j.wasman.2009.10.016

    Article  Google Scholar 

  35. Sanna A, Hall MR, Maroto-Valer M (2012) Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ Sci 5(7):7781. doi:10.1039/c2ee03455g

    Article  Google Scholar 

  36. Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manag 21:285–293

    Article  Google Scholar 

  37. Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z (2007) Properties and hydration of blended cements with steelmaking slag. Cem Concr Res 37(6):815–822. doi:10.1016/j.cemconres.2007.03.008

    Article  Google Scholar 

  38. Li J, Yu Q, Wei J, Zhang T (2011) Structural characteristics and hydration kinetics of modified steel slag. Cem Concr Res 41(3):324–329. doi:10.1016/j.cemconres.2010.11.018

    Article  Google Scholar 

  39. Zhang T, Yu Q, Wei J, Li J, Zhang P (2011) Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl 56(1):48–55. doi:10.1016/j.resconrec.2011.09.003

    Article  Google Scholar 

  40. Ghosh S, Rao P, Paul A, Raina K (1979) The chemistry of dicalcium silicate mineral. J Mater Sci 14(7):1554–1566

    Article  Google Scholar 

  41. Setién J, Hernández D, González JJ (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr Build Mater 23:1788–1794. doi:10.1016/j.conbuildmat.2008.10.003

    Article  Google Scholar 

  42. Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57. doi:10.1016/j.resconrec.2006.05.008

    Article  Google Scholar 

  43. Lin HC, Ou MY, Huang CH, Hsueh WH (2007) Water immersing and aging treatment of steel-making slag. Taiwan (ROC) Patent

    Google Scholar 

  44. Hammes F, Ae Seka, de Knijf S, Verstraete W (2003) A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res 37:699–704

    Article  Google Scholar 

  45. Amidi S, Wang J (2015) Surface treatment of concrete bricks using calcium carbonate precipitation. Constr Build Mater 80:273–278. doi:10.1016/j.conbuildmat.2015.02.001

    Article  Google Scholar 

  46. Pan SY, Chen YH, Chen CD, Shen AL, Lin M, Chiang PC (2015) High-gravity carbonation process for enhancing CO2 fixation and utilization exemplified by the steelmaking industry. Environ Sci Technol 49(20):12380–12387. doi:10.1021/acs.est.5b02210

    Article  Google Scholar 

  47. Wanga Q, Yana PY, Feng JW (2011) A discussion on improving hydration activity of steel slag by altering its mineral compositions. J Hazard Mater 186:1070–1075

    Article  Google Scholar 

  48. Luo X, Liu JX, Wang B, Zhu GL, Lu ZF (2011) Effect of accelerators on the early strength of steel slag cementitious materials. J Beijing Univ Chem Technol (in Chinese) 38(1):73–75

    Google Scholar 

  49. Pan SY, Chiang PC, Chen YH, Tan CS, Chang EE (2013) Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7):3308–3315. doi:10.1021/es304975y

    Google Scholar 

  50. Liang XJ, Ye ZM, Chang J (2012) Early hydration activity of composite with carbonated steel slag. J Chin Ceram Soc (in Chinese) 40(2):228–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). Utilization of Carbonation Products. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_14

Download citation

Publish with us

Policies and ethics