Skip to main content

Iron and Steel Slags

  • Chapter
  • First Online:
Carbon Dioxide Mineralization and Utilization

Abstract

Nowadays, iron and steel industries are moving toward environmental sustainability through careful control of greenhouse gas emissions and appropriate management of iron/steel manufacturing residues generated. Application of fresh iron and steel slags as an alternative to standard materials has been known for a number of years around the world. It was frequently used in asphalt mixtures, other layers of pavement structure, unbound base courses, and embankments. However, several barriers, including volume expansion of blended materials and concerns about environmental impacts and social acceptance, have been encountered. In this chapter, the types of iron and steel industries are first illustrated. The physico-chemical properties of four different types of iron and steel slags, including blast furnace slag, basic oxygen furnace slag, electric arc furnace slag, and ladle furnace slag, are then illustrated. In addition, the challenges in direct use of slag in civil engineering are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirschen M, Risonarta V, Pfeifer H (2009) Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry. Energy 34(9):1065–1072. doi:10.1016/j.energy.2009.04.015

    Article  Google Scholar 

  2. Sandberg H, Lagneborg R, Lindblad B, Axelsson H, Bentell L (2001) CO2 emissions of the Swedish steel industry. Scand J Metall 30:420–425

    Article  Google Scholar 

  3. Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801. doi:10.1016/j.proenv.2012.10.108

    Article  Google Scholar 

  4. Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57. doi:10.1016/j.resconrec.2006.05.008

    Article  Google Scholar 

  5. Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE (2013) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685. doi:10.1021/es403323x

    Article  Google Scholar 

  6. Zhang T, Yu Q, Wei J, Li J, Zhang P (2011) Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl 56(1):48–55. doi:10.1016/j.resconrec.2011.09.003

    Article  Google Scholar 

  7. USGS (2015) Mineral Commodity Summaries 2015. U.S. Geological Survey

    Google Scholar 

  8. Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven R (2008) Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind Eng Chem Res 47(18):7104–7111

    Article  Google Scholar 

  9. Nayak NP (2008) Characterization and utilization of solid wastes generated from Bhilai steel plant. National Institute of Technology, Rourkela

    Google Scholar 

  10. Mahieux PY, Aubert JE, Escadeillas G (2008) Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Constr Build Mater 23:742–747

    Article  Google Scholar 

  11. Dippenaar R (2004) Industrial uses of slag: the use and re-use of iron and steelmaking slags. In: VII International conference on molten slags fluxes and salts, 2004. The South African Institute of Mining and Metallurgy, pp 57–70

    Google Scholar 

  12. World Bank Group (1998) Project guidelines: iron and steel manufacturing. Pollution prevention and abatement handbook. WORLD BANK GROUP, USA

    Google Scholar 

  13. Kishore K (2015) Sand for concrete from steel mills induction furnace waste slag. engineeringcivil.com. http://www.engineeringcivil.com/sand-for-concrete-from-steel-mills-induction-furnace-waste-slag.html. Accessed 10 Dec 2015

  14. Pickles CA (2009) Thermodynamic analysis of the selective chlorination of electric arc furnace dust. J Hazard Mater 166(2–3):1030–1042. doi:10.1016/j.jhazmat.2008.11.110

    Article  Google Scholar 

  15. Costa G (2009) Accelerated carbonation of minerals and industrial residues for carbon dioxide storage. Università delgi Studi di Roma

    Google Scholar 

  16. Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47(20):7610–7616

    Article  Google Scholar 

  17. Bayer Ozturk Z, Eren Gultekin E (2015) Preparation of ceramic wall tiling derived from blast furnace slag. Ceram Int 41(9):12020–12026. doi:10.1016/j.ceramint.2015.06.014

    Article  Google Scholar 

  18. Teir S, Eloneva S, Fogelholm C-J, Zevenhoven R (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32(4):528–539. doi:10.1016/j.energy.2006.06.023

    Article  Google Scholar 

  19. Li P, Pan SY, Pei S, Lin YPJ, Chiang PC (2016) Challenges and perspectives on carbon fixation and utilization technologies: an overview. Aerosol Air Qual Res 16(6):1327–1344. doi:10.4209/aaqr.2015.12.0698

    Article  Google Scholar 

  20. Han GX, An XH, Jin F, Chen CJ, Zhou H (2016) Self-compacting concrete prepared with solid waste. In: Progress in civil, architectural and hydraulic engineering IV edn. Taylor & Francis Group, London, UK

    Google Scholar 

  21. Martinez-Lopez R, Escalante-Garcia JI (2016) Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: strength as a function of the composition. Constr Build Mater 119:119–129. doi:10.1016/j.conbuildmat.2016.05.064

    Article  Google Scholar 

  22. Huang X, Huang T, Li S, Muhammad F, Xu G, Zhao Z, Yu L, Yan Y, Li D, Jiao B (2016) Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram Int 42(8):9538–9549. doi:10.1016/j.ceramint.2016.03.033

    Article  Google Scholar 

  23. Vilaplana JL, Baeza FJ, Galao O, Alcocel EG, Zornoza E, Garcés P (2016) Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers. Constr Build Mater 116:63–71. doi:10.1016/j.conbuildmat.2016.04.066

    Article  Google Scholar 

  24. Zhao J, Wang D, Yan P, Zhao S, Zhang D (2016) Particle characteristics and hydration activity of ground granulated blast furnace slag powder containing industrial crude glycerol-based grinding aids. Constr Build Mater 104:134–141. doi:10.1016/j.conbuildmat.2015.12.043

    Article  Google Scholar 

  25. Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cement Concr Compos 34(1):34–40. doi:10.1016/j.cemconcomp.2011.08.012

    Article  Google Scholar 

  26. Li Q, Ding H, Rahman A, He D (2016) Evaluation of Basic Oxygen Furnace (BOF) material into slag-based asphalt concrete to be used in railway substructure. Constr Build Mater 115:593–601. doi:10.1016/j.conbuildmat.2016.04.085

    Article  Google Scholar 

  27. Wu XQ, Zhu H, Hou XK, Li HS (1999) Study on steel slag and fly ash composite Portland cement. Cem Concr Res 29:1103–1106

    Article  Google Scholar 

  28. Huang YH, Liu CJ (2008) Analysis on comprehensive utilization of electric furnace slag. Ind Heat 37(5):4–6 (in Chinese)

    Google Scholar 

  29. Shi CJ, Qian JS (2000) High performance cementing materials from industrial slags—a review. Resour Conserv Recy 29(3):195–207

    Article  Google Scholar 

  30. Birat J-P (2009) Steel and CO2—the ULCOS Program, CCS and mineral carbonation using steelmaking slag. In: 1st International slag valorisation symposium, Leuven, 2009

    Google Scholar 

  31. Shi C, Qian J (2000) High performance cementing materials from industrial slags—a review. Resour Conserv Recy 29(3):195–207

    Article  Google Scholar 

  32. Frı́as Rojas M, Sánchez de Rojas MI (2004) Chemical assessment of the electric arc furnace slag as construction material: Expansive compounds. Cem Concr Res 34 (10):1881–1888. doi:10.1016/j.cemconres.2004.01.029

  33. Bodor M, Santos RM, Cristea G, Salman M, Cizer Ö, Iacobescu RI, Chiang YW, van Balen K, Vlad M, van Gerven T (2016) Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cem Concr Compos 65:55–66. doi:10.1016/j.cemconcomp.2015.10.002

    Article  Google Scholar 

  34. Santos RM, Ling D, Sarvaramini A, Guo M, Elsen J, Larachi F, Beaudoin G, Blanpain B, Van Gerven T (2012) Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. Chem Eng J 203:239–250. doi:10.1016/j.cej.2012.06.155

    Article  Google Scholar 

  35. Murphy JN, Meadowcroft TR, Barr PV (1997) Enhancement of the cementitious properties of steelmaking slag. Can Metall Quart 36:315–331

    Article  Google Scholar 

  36. Ramachandran V (1977) Calcium chloride in concrete. Mag Concr Res 29:1–216

    Google Scholar 

  37. Luxán MP, Sotolongo R, Dorrego F, Herrero E (2000) Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace. Cement Concr Compos 30:517–519

    Article  Google Scholar 

  38. Chang JJ, Yeih W, Chung TJ, Huang R (2016) Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Constr Build Mater 109:34–40. doi:10.1016/j.conbuildmat.2016.01.049

    Article  Google Scholar 

  39. Kuo W-T, Shu C-Y, Han Y-W (2014) Electric arc furnace oxidizing slag mortar with volume stability for rapid detection. Constr Build Mater 53:635–641. doi:10.1016/j.conbuildmat.2013.12.023

    Article  Google Scholar 

  40. Setién J, Hernández D, González JJ (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr Build Mater 23:1788–1794. doi:10.1016/j.conbuildmat.2008.10.003

    Article  Google Scholar 

  41. Monkman S, Shao Y, Shi C (2009) Carbonated ladle slag fines for carbon uptake and sand substitute. J Mater Civ Eng 21:657–665. doi:10.1061//asce/0899-1561/2009/21:11/657

    Article  Google Scholar 

  42. Kuo W-T, Wang H-Y, Shu C-Y (2014) Engineering properties of cementless concrete produced from GGBFS and recycled desulfurization slag. Constr Build Mater 63:189–196. doi:10.1016/j.conbuildmat.2014.04.017

    Article  Google Scholar 

  43. Frías RM, Sánchez dRM (2004) Chemical assessment of the electric arc furnace slag as construction material: expansive compounds. Cem Concr Res 34(10):1881–1888

    Google Scholar 

  44. Poh HY, Ghataora GS, Gharizeh N (2006) Soil stabilization using basic oxygen slag fines. J Mater Civ Eng (ASCE) 18(2):229–240

    Article  Google Scholar 

  45. Shi C, Quian J (2000) High performance cementing materials from industrial slags—a review. Resour Conserv Recy 29(3):195–207

    Article  Google Scholar 

  46. Huang X, Wang Z, Liu Y, Hu W, Ni W (2016) On the use of blast furnace slag and steel slag in the preparation of green artificial reef concrete. Constr Build Mater 112:241–246. doi:10.1016/j.conbuildmat.2016.02.088

    Article  Google Scholar 

  47. Geiseler J (1996) Use of steelworks slag in Europe. Waste Manag 16(1–3):59–63

    Article  Google Scholar 

  48. De Windt L, Chaurand P, Rose J (2011) Kinetics of steel slag leaching: batch tests and modeling. Waste Manag 31(2):225–235. doi:10.1016/j.wasman.2010.05.018

    Article  Google Scholar 

  49. Wu SP, Xue YJ, Ye QS, Chen YC (2007) Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build Environ 42(7):2580–2585. doi:10.1016/j.buildenv.2006.06.008

    Article  Google Scholar 

  50. Pan SY, Chen YH, Chen CD, Shen AL, Lin M, Chiang PC (2015) High-gravity carbonation process for enhancing CO2 fixation and utilization exemplified by the steelmaking industry. Environ Sci Technol 49(20):12380–12387. doi:10.1021/acs.est.5b02210

    Article  Google Scholar 

  51. Chen KW, Pan SY, Chen CT, Chen YH, Chiang PC (2016) High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement. J Clean Prod 124:350–360. doi:10.1016/j.jclepro.2016.02.072

    Article  Google Scholar 

  52. Qi G, Yue D, Fukushima M, Fukuchi S, Nie Y (2012) Enhanced humification by carbonated basic oxygen furnace steel slag–I. Characterization of humic-like acids produced from humic precursors. Bioresour Technol 104:497–502. doi:10.1016/j.biortech.2011.11.021

    Article  Google Scholar 

  53. Chiou CS, Chang CF, Chang CT, Shie JL, Chen YH (2006) Mineralization of reactive black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide. Chemosphere 62(5):788–795. doi:10.1016/j.chemosphere.2005.04.072

    Article  Google Scholar 

  54. Tsai TT, Kao CM, Wang JY (2011) Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere 83(5):687–692. doi:10.1016/j.chemosphere.2011.02.023

    Article  Google Scholar 

  55. Kang HJ, An KG, Kim DS (2004) Utilization of steel slag as an adsorbent of ionic lead in wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 39(11–12):3015–3028

    Article  Google Scholar 

  56. Han C, Wang Z, Yang W, Wu Q, Yang H, Xue X (2016) Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecol Eng 89:1–6. doi:10.1016/j.ecoleng.2016.01.004

    Article  Google Scholar 

  57. Islam A, Alengaram UJ, Jumaat MZ, Bashar II, Kabir SMA (2015) Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Constr Build Mater 101:503–521. doi:10.1016/j.conbuildmat.2015.10.026

    Article  Google Scholar 

  58. Stolaroff J, Lowry G, Keith D (2005) Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Convers Manag 46(5):687–699. doi:10.1016/j.enconman.2004.05.009

    Article  Google Scholar 

  59. CSC Group (2003) Slag Utilization. 4 edn., Kaohsiung

    Google Scholar 

  60. Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manag 21:285–293

    Article  Google Scholar 

  61. San Jose´ JT, Urı´a A (2001) Escorias de horno de arco ele´ctrico en mezclas bituminosas. Arte Cem 1905:122–125

    Google Scholar 

  62. Ameri M, Behnood A (2012) Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Constr Build Mater 26:475–480

    Article  Google Scholar 

  63. Ahmedzadea P, Sengoz B (2009) Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J Hazard Mater 165:300–305

    Article  Google Scholar 

  64. Asi IM (2007) Evaluating skid resistance of different asphalt concrete mixes. Build Environ 42:325–329

    Article  Google Scholar 

  65. Xue YJ, Wu SP, Hou HB, Zha J (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J Hazard Mater B 138:261–268

    Article  Google Scholar 

  66. Qasrawi H, Shalabi F, Asi I (2009) Use of low CaO unprocessed steel slag in concrete as construction and building materials 23:1118–1125

    Article  Google Scholar 

  67. Papayianni I, Anastasiou E (2010) Production of high-strength concrete using high volume of industrial by-products. Constr Build Mater 24:1412–1417

    Article  Google Scholar 

  68. Wen XL, Ouyang D, Pan P (2011) Research of high anti-chloride ion permeability of C100 concrete mixed with steel slag. Concrete 6:73–75 (in Chinese)

    Google Scholar 

  69. Netinger I, Kesegic I, Guljas I (2011) The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates. Fire Saf J 16:425–430

    Article  Google Scholar 

  70. Chen DY, Tan KF (2006) Study on mineral admixture of concrete prepared with electric furnace slag. Bull Chin Ceram Soc 25(6):73–75 (in Chinese)

    Google Scholar 

  71. Ducman V, Mladenovic A (2011) The potential use of steel slag in refractory concrete. Mater Ch 62:716–723

    Article  Google Scholar 

  72. Slag: A Sound Choice in Favour of Ecology. Germany

    Google Scholar 

  73. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C (2008) Utilization of steel slag for Portland cement clinker production. J Hazard Mater 152:805–811

    Article  Google Scholar 

  74. Iacobescua RI, Koumpouri D, Pontikesc Y, Sabana R, Angelopoulos GN (2011) Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. J Hazard Mater 196:287–294

    Article  Google Scholar 

  75. Tiifekqi M, Demirbas A, Genc H (1997) Evaluation of steel furnace slags as cement additives. Cem Concr Res 27(11):1713–1717

    Article  Google Scholar 

  76. Huang Y, Liu Z (2010) Investigation on phosphogypsum–steel slag–granulated blast-furnace slag-limestone cement. Constr Build Mater 24:1296–1301

    Article  Google Scholar 

  77. Feng CH, Dou Y, Li DX (2011) Steel slag used as admixture in composite cement. J Nanjing Univ Technol (Nat Sci Ed) 33 (1):74–79 (in Chinese)

    Google Scholar 

  78. Altun IA, Yilmaz I (2002) Study on steel furnace slags with high MgO as additive in Portland cement. Cem Concr Res 32(8):1247–1249

    Article  Google Scholar 

  79. IEA (2014) Tracking clean energy progress 2014—energy technology perspectives 2014 excerpt iea input to the clean energy ministerial. International Energy Agency, France

    Google Scholar 

  80. Doucet FJ (2010) Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Miner Eng 23(3):262–269. doi:10.1016/j.mineng.2009.09.006

    Article  Google Scholar 

  81. Chandra S (1997) Waste materials used in concrete manufacturing. Noyes Publications, New Jersey, USA

    Google Scholar 

  82. Pan S-Y, Chiang A, Chang E-E, Lin Y-P, Kim H, Chiang P-C (2015) An innovative approach to integrated carbon mineralization and waste utilization: a review. Aerosol Air Qual Res 15:1072–1091. doi:10.4209/aaqr.2014.10.02

    Google Scholar 

  83. Huijgen WJJ, Comans RNJ (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40(8):2790–2796

    Article  Google Scholar 

  84. Eloneva S, Teir S, Revitzer H, Salminen J, Said A, Fogelholm CJ, Zevenhoven R (2009) Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Steel Res Int 80(6):415–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). Iron and Steel Slags. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_11

Download citation

Publish with us

Policies and ethics