Skip to main content

Efficiency of an Industrially Important Crop Hibiscus cannabinus for Phytoremediation and Bioenergy Production

  • Chapter
  • First Online:
Phytoremediation Potential of Bioenergy Plants

Abstract

The present chapter discusses the geographical distribution of Hibiscus cannabinus and its versat ile applications. It is an annual, short-day, low input requirement, high biomass-yielding non-food crop which is cultivated since 4000 BC in Africa. It belongs to family Malvaceae and section Furcaria. It is an important fibre crop which has numerous industrial applications. It is mainly cultivated for bast and core fibres which are used in making of ropes, twine, composites, bedding materials, absorbents, highly efficient paper, fabrics and building materials. It is also considered as a potent candidate for phytoremediation of heavy metals and oils. Seed oil can be used for treatment of various health disorders like cholesterol level, blood pressure, etc. Numerous studies have been conducted on H. cannabinus (kenaf) which proved that it is also a green alternative for the production of eco-friendly and reliable bioenergy. It also sequesters carbon dioxide which is considered as a greenhouse gas and thus contributes in reducing the consequences of global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abioye OP, Abdul Aziz A, Agamuthu P (2010) Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water Air Soil Pollut 209:173–179

    Article  CAS  Google Scholar 

  • Agbor GA, Oben JE, Ngogang JY (2005) Antioxidant activity of Hibiscus cannabinus leaf extract. https://www.foodafrica.nri.org/nutrient/nutrition%20proceeding, August 2009

  • Alexopouloua E, Lib D, Papatheoharic Y, Siqib H, Scordiad D, Testa G (2015) How kenaf (Hibiscus cannabinus L.) can achieve high yields in Europe and China. Ind Crop Prod 68:131–140

    Article  Google Scholar 

  • Anila L, Vijayalakshmi NR (2002) Flavonoids from Emblica officinalis and Mangifera indica-effectiveness for dyslipidemia. J Ethnopharmacol 79:81–87

    Article  CAS  Google Scholar 

  • Arbaoui S, Evlard A, El Wafi MM, Campanella B, Roger P, Bettaieb T (2013) Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation J24:563–567

    Article  Google Scholar 

  • Arbaoui S, Campanella B, Rezgui S, Paul R, Bettaieb T (2014) Bioaccumulation and photosynthetic activity response of Kenaf (Hibiscus cannabinus L.) to cadmium and zinc. Greener J Agri Sci 4:091–100

    Google Scholar 

  • Ardente F, Beccali M, Cellura M, Mistretta M (2008) Building energy performance: ALCA case study of kenaf-fibers insulation board. Energ Build 40:1–10

    Article  Google Scholar 

  • Arthur LS, Kelly LH, Jae Min L, David JB (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake Ferns and Indian Mustard. Int J Phytoremed 5:89–103

    Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  • Bada BS (2015) Bioremediation of textile effluent polluted soil using kenaf (Hibiscus cannabinus Linn.) and composted market waste. J Appl Sci Environ Manag 19:773–776

    CAS  Google Scholar 

  • Bada SB, Raji KA (2010) Phytoremediation potential of kenaf (Hibiscus cannabinus L.) grown in different soil textures and cadmium concentrations. Afr J Environ Sci Technol 4:250–255

    CAS  Google Scholar 

  • Bakhtiari MR, Ahmad D, Othman J, Ismail N (2011) Physical and mechanical properties of kenafseed. Trans ASABE 27:263–268

    Google Scholar 

  • Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Benson TJ, George CE (2005) Cellulose based adsorbent materials for the dehydration of ethanol using thermal swing adsorption. Adsorption 11:697–670

    Article  Google Scholar 

  • Bettaieb T, Arbaoui S, Campanella B, Paul R (2013) Potential of Kenaf (Hibiscus cannabinus L.) for phytoremediation of land irrigated by waste water. In: Proceedings of the Ramiran 2013. 15th International Conference, Versailles, France, June. S2.27 ref.12

    Google Scholar 

  • Bhutto AW, Bazmi AA, Zahedi G (2011) Greener energy: issues and challenges for Pakistan—biomass energy prospective. Renew Sust Energ Rev 15:3207–3219

    Article  Google Scholar 

  • Borazjani A, Diehl S (2010) Kenaf core as an enhancer of bioremediation. http://journeytoforever.org/biofuel.html

  • Burken JG, Schnoor JL (1997) Uptake and metabolism o fatrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Cartoga A, Fernando A, Oliveira JS (2005) Effects on growth, productivity and biomass quality of kenaf of soils contaminated with heavy metals. Sci Ref Cosmos 4:1–4

    Google Scholar 

  • Cetin E, Gupta B, Moghtaderi B (2005) Effect of pyrolysis and heating rate on radiate pine char structure and apparent gasification reactivity. Fuel 84:1328–1334

    Article  CAS  Google Scholar 

  • Charles I (2002) Trends in new crops and new use. ASHS Press, Alexandria

    Google Scholar 

  • Cheng Z, Lu BR, Sameshima K, Fu DX, Chen JK (2004) Identification and genetic relationships of kenaf (Hibiscus cannabinus L.) germplasm revealed by AFLP analysis. Genet Resour Crop Evol 51:393–401

    Article  CAS  Google Scholar 

  • Coetzee R, Labuschagne MT, Hugo A (2008) Fatty acid and oil variation in seed from kenaf (Hibiscus cannabinus L.). Ind Crop Prod 27:104–109

    Article  CAS  Google Scholar 

  • Conde-Mejía C, Jiménez-Gutiérrez A, El-Halwagi M (2012) A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Spec Issue Energy Waste 90:189–202

    Google Scholar 

  • Cosentino SL, Copani V (2003) Leaf photosynthesis in kenaf (Hibiscus cannabinus L.) in response to water stress. Agro Ind 2:137–145

    Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230

    Article  CAS  Google Scholar 

  • Dempsey JM (1975) Fiber crops. The University Press of Florida, Gainesville, pp 457

    Google Scholar 

  • Dudka S, Miller WP (1999) Permissible concentrations of Arsenic and Lead in soils based on risk assessment. Water Air Soil Pollut 113:127–132

    Article  CAS  Google Scholar 

  • Duggan J (2005) The potential for landfill leachate treatment using willows in the UK—a critical review. Resour Conserv Recycl 45:97–113

    Article  Google Scholar 

  • Duke JA (1983) Handbook of energy crops (unpublished). http://www.hort.purdue.edu/newcrop/duke_energy/Hibiscus_cannabinus.html. Accessed 11 Nov 2004

  • FAO (2003) Consultation on natural fibres, The production and consumption of Kenaf in China. ESC-Fibres consultation No: 03/6

    Google Scholar 

  • Gonzalez-Garcia S, Moreira MT, Feijoo G (2010) Comparative environmental performance of lignocellulosic ethanol from different feedstocks. Renew Sust Energ Rev 14:2077–2085

    Article  CAS  Google Scholar 

  • Guo XF, Wei ZB, Wu QT, Qiu JR, Zhou JL (2011) Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments. Pedosphere 21:650–656

    Article  CAS  Google Scholar 

  • Hamid MRA (2008) Kenaf to replace tobacco: farmers in Kedah to go for plants attributed to various items. Beriata Harians news update

    Google Scholar 

  • Hernández R, Fernando S, French T (2012) Development of a bioadsorbent for the biodiesel industry. http://www.technologyalliance.ms/strategic-biomass-solu-tions/ms-projects/university-research.php

  • Ho W, Ang L, Lee D (2008) Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J Environ Sci 20:1341–1347

    Article  CAS  Google Scholar 

  • Hossain MD, Musa MH, Nuruddin AA, Jol H, Hamid HA (2016) Physio-agronomic performance of kenaf as influenced by different carbon levels. Plant OMICS 9:61–72

    Article  Google Scholar 

  • James SA, Ladan MJ, Goje DJ (2013) Antioxidant potential of Hibiscus cannabinus methanolic leaf extract. Sci World J 8:8–12

    Google Scholar 

  • Jankaite A, Vasarevisius S (2007) Use of Poaceae f. species to decontaminated soil from heavy metals. Ekologija 53:84–89

    CAS  Google Scholar 

  • Kaldor AF, Karlgren C, Verwest H (1990) Kenaf-a fast growing fiber source for papermaking. TAPPI J 73:205–208

    CAS  Google Scholar 

  • Kojima Y, Kato Y, Yoon S-L, Lee M-K (2014) Kenaf as a bioresource for production of hydrogen-rich gas. Agrotechnology 3:1–8

    Article  Google Scholar 

  • Kugler DE (1988) Kenaf newsprint: realizing commercialization of a new crop after four decades of research and development. A report on the Kenaf Demonstration Project. United States Cooperative State research service, special projects and programme systems, Washington, DC, pp 13

    Google Scholar 

  • Kulger DE (1996) Kenaf commercialization 1986–1995. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, pp 129–132

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Langan P, Gnanakaran S, Rector KD, Pawley N, Fox DT, Chof DW et al (2011) Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 4:3820–3833

    Article  CAS  Google Scholar 

  • Le Roux M (2007) South Africa: Seardel hopes new plant will oust plastics. http://allafrica.com/stories/200702060312.html

  • LeMahieu PJ, Oplinger ES, Putnam DH (2003) Kenaf in: alternative field crops manual. http://www.corn.agronomy.wisc.edu/FISC/Alternatives/Kenaf.htm

  • Li D (2002) Kenaf production research and development in China. In: International Kenaf symposium, TN, USA

    Google Scholar 

  • Lips SJJ, Iniguez de Heredia GM, Op den Kamp RGM, van Dam JEG (2009) Water absorption characteristics of kenaf core to use as bedding material. Ind Crop Prod 29:73–79

    Article  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade offs between traits and environment. Environ Exp Bot 68: 1–13

    Google Scholar 

  • Makari HK, Haraprasad N, Patil HSR (2008) In vitro antioxidant activity of the hexane and methanolic extracts of Cordiawallichii and celastruspaniculata. Internet J Aesthetic Antiaging Med 1:1–6

    Google Scholar 

  • Marisol Berti T, Kamireddy SR, Ji Y (2013) Row spacing affects biomass yield and composition of Kenaf (Hibiscus cannabinus L.) as a lignocellulosic feedstock for bioenergy. J Sust Bioenerg Syst 3:68–73

    Google Scholar 

  • Mazumder BB, Nakgawa-izumi A, Kenichi K, Ohtani Y, Sameshima K (2005) Evaluation of harvesting time effects on kenafbast lignin by pyrolysis-gas chromatography. Ind Crop Prod 21:17–24

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Meera M, Agamuthu P (2011) Phytoextraction of As and Fe using Hibiscus cannabinus from soil polluted with landfill leachate. Int J Phytoremed 14:186–199

    Article  Google Scholar 

  • Mishra J, Srivastava RK, Shukla SV, Raghav CS (2007) Antioxidants in aromatic and medicinal plants. Science Tech Entrepreneur:1–16

    Google Scholar 

  • Mohamed A, Bhardwaj H, Hamama A, Webber C III (1995) Chemical composition of kenaf (Hibiscus cannabinus L.) seed oil. Ind Crop Prod 4:157–165

    Article  CAS  Google Scholar 

  • Mosquera OM, Correa YM, Buitrago DC, Nino J (2007) Antioxidant activity of twenty five plants from Colombian biodiversity. Mem Inst Oswaldo Cruz Rio de Janerio 102:631–634

    Article  Google Scholar 

  • Muchow RC, Wood IM (1983) Effect of sowing date on the growth and yield of kenaf (Hibiscus cannabinus) grown under irrigation in tropical Australia I. Phenology and seed production. Field Crop Res 7:91–102

    Article  Google Scholar 

  • Muhammad SR, Naim R, Ameena S, Tariq M, Jong-In H (2013) Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew Sust Energ Rev 18:154–164

    Article  Google Scholar 

  • Mukherjee S, Jagtap SD, Kuvalekar AA, Kale YB, Kulkarni OP, Harsulkar AM, Pawar PK (2010) Demonstration of the potential of H. cannabinus Linn. flowers to manage oxidative stress, bone related disorders and free- radical induced DNA damage. Ind J Nat Prod Res 1:322–327

    Google Scholar 

  • Nabulo G, Black CR, Young SD (2011) Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environ Pollut 15:368–376

    Article  Google Scholar 

  • Nelson GH, Nieschlag HJ, Wolff IA (1962) A search for new fiber crops, V. Pulping studies on kenaf. TAPPI J 45:780–786

    Google Scholar 

  • Nyam KL, Tan CP, Lai OM, Long K, Che Man YB (2009) Physicochemical properties and bioactive compounds of selected seed oils. LWT Food Sci Technol 42:1396–1403

    Article  CAS  Google Scholar 

  • Pascoal Neto C, Seca A, Fradinho D, Coimbra MA, Domingues F, Evtuguin D, Silvestre A, Cavaleiro JAS (1996) Chemical composition and structural features of the macro molecular components of Hibiscus cannabinus grown in Portugal. Ind Crop Prod 5:189–196

    Article  CAS  Google Scholar 

  • Pawar PK, Borse TP, Pinjari RZ, Maheshwari VL (2008) A simple technique for rapid quantitative determination of solasodine from cultured hairy roots of Solanum surattense. J Herbal Med Toxicol 2:7–10

    CAS  Google Scholar 

  • Raskin II, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  • Rathana Y, Roces SA, Bacani FT, Tan RR, Kubouchi M, Yimsiri P (2010) Microwave enhanced alkali catalyzed trans esterification of kenaf seed oil. Int J Chem React Eng 8:132–141

    Google Scholar 

  • Rotkittikhun R, Kruatrachue M, Chaiyarat R, Ngernsansaruay C, Pokethitiyook P, Paijitprapaporn A, Baker AJM (2006) Uptake and accumulation of lead by plants from the Bongam lead mine area in Thailand. Environ Pollut 144:681–688

    Article  CAS  Google Scholar 

  • Russo A, Izzo AA, Cardile V, Borrelli F, Vanella A (2001) Indian medicinal plants as antiradicals and DNA cleavage protectors. Phytomedicine 8:125–132

    Article  CAS  Google Scholar 

  • Saba N, Jawaid M, Hakeem KR, Paridah MT, Khalina A, Alothman O.Y (2015) Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renew Sust Energ Rev 42:446–459

    Google Scholar 

  • Santos GCG, Rodella AA, Abreu CA, Coscione AR (2010) Vegetable species for phytoextraction of boron, copper, lead, manganese and zinc from contaminated soil. Sci ELO Brasil 67:713–719

    Google Scholar 

  • Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–802

    Article  CAS  Google Scholar 

  • Sellers T, Miller GD, Fuller MJ (1993) Kenaf core as a board raw material. For Prod J 43:69–71

    CAS  Google Scholar 

  • Thaiponga K, Boonpra Koba U, Crosbyb K, Cisneros-Zevalllosc L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP and ORAC assays of estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675

    Article  Google Scholar 

  • Umeki K, Namioka T, Yosikawa K (2012) The effect of steam on pyrolysis and char reactions behavior during rice straw gasification. Fuel Process Technol 94:53–64

    Article  CAS  Google Scholar 

  • Webber CL, Bledsoe RE (1991) Kenaf production, harvesting, processing and products. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 416–421

    Google Scholar 

  • Wittbrodt PR, Palmer CD (1995) Reduction of Cr-VI in the presence of excess soil fulvic acid. Environ Sci Technol 29:255–265

    Article  CAS  Google Scholar 

  • Wong YC, Lim SH, Atiqah NA (2013) Remediation of industry wastewater effluent by using Kenaf as waxes. Present Environ Sustain Dev 7:290–295

    Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2010) Phytoremediation potential of Maize (Zea mays L.). A review. Afr J Gen Agric 6:275–287

    Google Scholar 

  • Yusri NM, Chan KW, Iqbal S, Ismail M (2012) Phenolic content and antioxidantactivity of Hibiscus cannabinus L. Seed extracts after sequential solvent extraction. Molecules 17:12612–12621

    Article  Google Scholar 

  • Zaini N, Kamarudin KSN (2014) Adsorption of carbon dioxide on monoethanolamine (MEA)–impregnated Kenaf core fiber by pressure swing adsorption system (PSA). J Teknologi Sci Eng 68:11–16

    Google Scholar 

  • Zwane PE, Masarirambi MT (2009) Kenaf (Hibiscus cannabinus) and allied fibres for sustainable development in Swaziland. J Agric Soc Sci 5:35–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Vishnoi, N., Singh, D.P. (2017). Efficiency of an Industrially Important Crop Hibiscus cannabinus for Phytoremediation and Bioenergy Production. In: Bauddh, K., Singh, B., Korstad, J. (eds) Phytoremediation Potential of Bioenergy Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-3084-0_9

Download citation

Publish with us

Policies and ethics