Skip to main content

Adaptive Filters and Observers

  • Chapter
  • First Online:
Digital Signal Processing with Matlab Examples, Volume 2

Part of the book series: Signals and Communication Technology ((SCT))

  • 6221 Accesses

Abstract

In signal processing, as well as in other fields, it is always advisable to take advantage of all the ‘a priori’ knowledge available about the problem in hand. Part of this knowledge could be expressed with mathematical models. Just after the chapter introduction, the next section introduces the Wiener filter, which is based on linear estimation. The filter uses models of the noise and the signal, and is quite successful for denoising. Section three shows that the filter coefficients can be recursively estimated during the process of filtering. This paves the way for formulating adaptive filters, with various applications. Section five contains an interesting example of application, which is image deblurring. The chapter continues with Bayesian estimation, with especial reference to image restoration. This section includes the Lucy-Richardson algorithm. After this, in view of aspects of interest for next chapters, the chapter presents a section on observers. Finally, there is a section with some interesting experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aboulnasr, K. Mayyas, A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE T. Sig. Proc. 45(3), 631–639 (1997)

    Article  Google Scholar 

  2. I. Androutsopoulos, J. Koutsias, K.V. Chandrinos, G. Paliouras, C.D. Spyropoulos, An evaluation of naive Bayesian anti-spam filtering. Software and Knowledge Engineering Laboratory, National Centre for Scientific Research (Demokritos), Athens, Greece, 2000. arXiv preprint arXiv:cs/0006013

  3. M. Awais, Multichannel Wiener filtering for speech enhancement in modulation domain. Master’s thesis, Blekinge Institute of Technology, Sweden, 2010

    Google Scholar 

  4. M. Basseville, I.V. Nikiforov, Detection of Abrupt Changes: Theory and Application, vol. 104 (Prentice Hall, Englewood Cliffs, 1993)

    Google Scholar 

  5. J. Benesty, H. Rey, L.R. Vega, S. Tressens, A nonparametric VSS NLMS algorithm. IEEE Signal Process. Lett. 13(10), 581–584 (2006)

    Article  Google Scholar 

  6. A. Carusone, D.A. Johns, Analogue adaptive filters: past and present. IEE Proc. Circuits Devices Syst. 147(1), 82–90, (2000)

    Google Scholar 

  7. J. Chen, J. Benesty, Y. Huang, S. Doclo, New insights into the noise reduction Wiener filter. IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006)

    Google Scholar 

  8. Y.S. Choi, H.C. Shin, W.J. Song, Robust regularization for normalized LMS algorithms. IEEE T. Circuits Syst. II 53(8), 627–631 (2006)

    Article  Google Scholar 

  9. S.J. Elliot, P.A. Nelson, Active noise control. IEEE Signal Process. Mgz. 10(4), 12–35 (1993)

    Article  Google Scholar 

  10. D. Erdogmus, J.C. Principe, From linear adaptive filtering to nonlinear information processing. IEEE Signal Process. Mgz., 14–33 (2006)

    Google Scholar 

  11. R. Fergus, B. Singh, A. Hertzmann, S. Roweis, W.T. Freeman, Removing camera shake from a single photograph. ACM. Trans. Graphics 25(3) (2006)

    Google Scholar 

  12. F. Gustafsson, F. Gustafsson, Adaptive Filtering and Change Detection. (Wiley, 2000)

    Google Scholar 

  13. L. Haglund, Adaptive Multidimensional Filtering. PhD thesis, Linköpings University, (1991)

    Google Scholar 

  14. R. Haskins, Bayesian spam-filtering techniques. LOGIN: The USENIX Mag. 28(3), 1–7 (2003)

    Google Scholar 

  15. S. Haykin, Adaptive Filter Theory. (Prentice Hall, 2002)

    Google Scholar 

  16. S. Haykin, B. Widrow, Least-Mean-Square Adaptive Filters. (Wiley, 2003)

    Google Scholar 

  17. J.H. Husøy, M.S.E. Abadi, Unified approach to adaptive filters and their performance. IET Sig. Process. 2(2), 97–109 (2008)

    Article  MathSciNet  Google Scholar 

  18. M. Jeub, C. Herglotz, C. Nelke, C. Beaugeant, P. Vary, in Noise Reduction for Dual-Microphone Mobile Phones Exploiting Power Level Differences. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2012), pp. 1693–1696

    Google Scholar 

  19. T. Kailath, A view of three decades of linear filtering theory. IEEE T. Inf. Theory 20(146) (1974)

    Google Scholar 

  20. M. Kamenetsky, B. Widrow, in A Variable Leaky LMS Adaptive Algorithm, in Proceedings of 38th IEEE Asilomar Conference on Signals, Systems and Computers, vol. 1 (2004), pp. 125–128

    Google Scholar 

  21. E. Karlsson, Software acoustic modem. Master’s thesis, Linköpings University (2013)

    Google Scholar 

  22. H.S. Kim, Y.M. Cho, H.J. Kim, Speech enhancement via mel-scale Wiener filtering with a frequency-wise voice activity detector. J. Mech. Sci. Technol. 21(5), 708–722 (2007)

    Article  Google Scholar 

  23. S.M. Kuo, D.R. Morgan, Active noise control: a tutorial review. Proc. IEEE 87(6), 943–973 (1999)

    Article  Google Scholar 

  24. R.H. Kwong, E.W. Johnston, A variable step size LMS algorithm. IEEE T. Signal Process. 40(7), 1633–1642 (1992)

    Article  MATH  Google Scholar 

  25. J.E. Kyprianidis, J. Döllner, Image Abstraction By Structure Adaptive Filtering. (Theory and Practice of, Computer Graphics, 2008), pp. 51–58

    Google Scholar 

  26. J. Lee, J-W Chen, H-C. Huang, Performance comparison of variable step-size NLMS algorithms, in Proceedings of the World Congress on Engineering and Computer Science, vol. 1, (2009)

    Google Scholar 

  27. J. Lee, H.C. Huang, Y.N. Yang, The generalized square-errorregularized LMS algorithm, in Proceedings of WCECS (2008), pp. 157–160

    Google Scholar 

  28. A. Levin, P. Sand, T.S. Cho, F. Durand, W.T. Freeman, Motion-invariant photography. ACM. Trans. Graphics 27(3) (2008)

    Google Scholar 

  29. L.B. Lucy, An iterative method for the rectification of observed distributions. Astronomical J. 79, 745–754 (1974)

    Article  Google Scholar 

  30. D.G. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Applications. (Sons, 1979)

    Google Scholar 

  31. G. Malik, A.S. Sappal, Adaptive equalization algorithms: An overview. Int. J. Adv. Comput. Sci. Appl. 2(3), 62–67 (2011)

    Google Scholar 

  32. D.P. Mandic, A generalized normalized gradient descent algorithm. IEEE Signal Process. Lett. 11(2), 115–118 (2004)

    Article  Google Scholar 

  33. S.U. Mehta, B. Wang, R. Ramamoorthi, F. Durand, Axis-aligned filtering for interactive physically-based diffuse indirect lighting. ACM Trans. Graphics (TOG) 32(4), 1–11 (2013)

    Article  MATH  Google Scholar 

  34. R. Molina, J. Núñez, F. Cortijo, J. Mateos, Image restoration in astronomy: A Bayesian review. IEEE Signal Process. Mgz. (2001), pp. 12–29

    Google Scholar 

  35. N. Nikolaev, Z. Nikolov, A. Gotchev, K. Egiazarian, Wavelet Domain Wiener Filtering for ECG Denoising Using Improved Signal Estimate, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP’00, vol. 6, (2000), pp. 3578–3581

    Google Scholar 

  36. A.D. Poularikas, Z.M. Ramadan, Adaptive Filtering Primer with MATLAB (Taylor & Francis, CRC, 2006)

    MATH  Google Scholar 

  37. S.U. Qureshi, Adaptive equalization. Proc. IEEE 73(9), 1349–1387 (1985)

    Article  Google Scholar 

  38. A. Ribes, F. Schmitt, Linear inverse problems in imaging. IEEE Signal Process. Mgz. 84 (2008)

    Google Scholar 

  39. W.H. Richardson, Bayesian-based iterative method of image restoration. J. Optical Soc. Am. 62, 55–59 (1972)

    Article  Google Scholar 

  40. M. Sahami, S. Dumais, D. Heckerman, E. Horvitz, A Bayesian Approach to Filtering Junk e-mail. Stanford University, (1998). http://ai.stanford.edu/ users/sahami/papers-dir/spam.pdf

  41. A.H. Sayed, Fundamentals of Adaptive Filtering. (Wiley, 2003)

    Google Scholar 

  42. N. Schneider, D.M. Gavrila, Pedestrian path prediction with recursive Bayesian filters: A comparative study, in Pattern Recognition. (Springer Berlin Heidelberg, 2013), pp. 174–183

    Google Scholar 

  43. H.C. Shin, A.H. Sayed, W.J. Song, Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11(2), 132–135 (2004)

    Article  Google Scholar 

  44. J.L. Starck, E. Pantin, Deconvolution in astronomy: a review. Publ. Astron. Soc. Pac. 114, 1051–1069 (2002)

    Article  Google Scholar 

  45. Y-W Tai, P. Tan, L. Gao, M.S. Brown, Richardson-Lucy deblurring from scenes under projective motion path. IEEE T. Pattern Anal. Mach. Intell. 33(8), 1603–1618 (2011)

    Google Scholar 

  46. T. Van Waterschoot, M. Moonen, Fifty years of acoustic feedback control: State of the art and future challenges. Proc. IEEE 99(2), 288–327 (2010)

    Google Scholar 

  47. B. Widrow, S. Steam, Adaptive Signal Processing. (Prentice Hall, 1985)

    Google Scholar 

  48. T. Yoshioka, H. Tachibana, T. Nakatani, M. Miyoshi, in Adaptive Dereverberation of Speech Signals with Speaker-Position Change Detection. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, (2009), pp. 3733–3736

    Google Scholar 

  49. R. Zdunek, Z. He, A. Cichocki, in Tomographic Image Reconstruction from Limited-View Projections with Wiener Filtered FOCUSS Algorithm, Proceedings of 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI (2008), pp. 768–771

    Google Scholar 

  50. J.R. Zeidler, Performance analysis of LMS adaptive prediction filters. Proc. IEEE 78(12), 1781–1806 (1990)

    Google Scholar 

  51. J.Y. Zheng, M. Shi, Scanning depth of route panorama based on stationary blur. Int. J. Comput. Vis. 78(2–3), 169–186 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Maria Giron-Sierra .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Giron-Sierra, J.M. (2017). Adaptive Filters and Observers. In: Digital Signal Processing with Matlab Examples, Volume 2. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2537-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2537-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2536-5

  • Online ISBN: 978-981-10-2537-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics