Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 6226 Accesses

Abstract

Filter banks allow signals to be decomposed into subbands. In this way, parallel powerful processing can be easily applied. Also, the decomposition paves the way for signal compression procedures. Due to these reasons, the interest on filter banks has significantly grown along years, so today there is large body of theory on this matter. This chapter is also important for other reasons, since it serves as one of the pertinent ways for introducing wavelets, as it will be confirmed in the next chapter and other parts of this book. The main topic in relation with filter banks and wavelets is ‘perfect reconstruction’, which is treated in detail. Some interesting aspects in this chapter are lattice structures, allpass filters, the discrete cosine transform (DCT), JPEG, and watermarking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aach, Fourier, block and lapped transforms, in Advances in Imaging and Electron Physics, ed.by P.W. Hawkes (Academic Press, 2003)

    Google Scholar 

  2. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE T. Comput. 90–93, 1974

    Google Scholar 

  3. I. Balasingham, T. Ramstad, J. Lervik, Survey of odd and even length filters in tree-structured filter banks for subband image compression, in Proceedings of the IEEE International Conference Acoustics, Speech and Signal Processing, vol. l4, pp. 3073–3076 (1997)

    Google Scholar 

  4. C. Brislawn, A simple lattice architecture for even-order linear-phase perfect reconstruction filter banks, in Proceedings of the IEEE International Symposium Time-Frequency and Time-Scale Analysis, pp 124–127 (1994)

    Google Scholar 

  5. W.H. Chen, C.H. Smith, S.C. Fralick, A fast computational algorithm for the discrete cosine transform. IEEE T. Commun. l25(9):1004–1009 (1977)

    Google Scholar 

  6. J. Cox, M.L. Miller, J.A. Boom, J. Fridrich, T. Kalker, Digital Watermarking and Stegonography (Morgan Kaufmann, 2007)

    Google Scholar 

  7. H.V. Dwivedi, Design of JPEG Compressor (National Institute of Technology, Rourkela, India, 2009) Bachl. thesis

    Google Scholar 

  8. A. Fettweis, H. Levin, A. Sedlmeyer, Wave digital lattice filters. Intl. J. Circuit Theory Appl. 2, 203–211 (1974)

    Google Scholar 

  9. S. Foucart, Linear Algebra and Matrix Analysis (Math 504 Lectures Notes, Drexel University, 2010). http://www.math.drexel.edu/foucart/teaching.htm

  10. F. Galijasevic, Allpass-Based Near-Perfect-Reconstruction Filter Banks. PhD thesis (Cristian-Albrechts University, Kiel, Germany, 2002)

    Google Scholar 

  11. X. Gao, T.Q. Nguyen, G. Strang, On factorization of M-channel paraunitary filterbanks. IEEE T. Sign. Process. 49(7), 1433–1446 (2001)

    Google Scholar 

  12. H. Haberdar, Discrete Cosine Transform Tutorial (2013). www.haberdar.org/Discrete-Cosine_Transform-Tutorial.htm

  13. C. Herley, M. Vetterli, Wavelets and recursive filter banks. IEEE T. Sign. Process. 41(8), 2536–2556 (1993)

    Google Scholar 

  14. S.A. Khayam, The Discrete Cosine Transform (DCT): Theory and Applications. (Michigan State University, 2003). Notes of the ECE 802-602 course

    Google Scholar 

  15. J. Kliewer, E. Brka, Near-perfect reconstruction low-complexity two-band IIR/FIR QMF banks with FIR phase-compensation filters. Sig. Process. 86, 171–181 (2005)

    Google Scholar 

  16. F. Kurth, M. Clausen, Filter bank tree and M-band wavelet packet algorithms in audio signal processing. IEEE T. Sign. Process. 47(2), 549–554 (1999)

    Google Scholar 

  17. B.G. Lee, A new algorithm to compute the discrete cosine transform. IEEE T. Acoust., Speech, Sign. Process. 32(6), 1243–1245 (1984)

    Google Scholar 

  18. A.B. Lewis, JPEG Tutorial (The Computer Laboratory: Topics in Security: Forensic Signal Analysis, University of Cambridge, UK., 2010). https://www.cl.cam.ac.uk/teaching/1011/R08/jpeg/acs10-jpeg.pdf

  19. Y.P. Lin, P.P. Vaidyanathan, A Kaiser window approach for the design of prototype filters of cosine modulated filter banks. IEEE Sign. Process. Lett. 5(6), 132–134 (1998)

    Google Scholar 

  20. H.W. Löllmann, P. Vary, Design of IIR QMF filter banks with near-perfect reconstruction and low complexity, in Proceedings of the IEEE International Conference Acoustics, Speech and Signal Processing, pp. 3521–3524 (2008)

    Google Scholar 

  21. H.S. Malvar, Lapped transforms for efficient transform/subband coding. IEEE T. Acoust., Speech, Sign. Process. 38(6), 969–978 (1990)

    Google Scholar 

  22. H.S. Malvar, D.H. Staelin, The LOT: Transform coding without blocking effects. IEEE T. Acoust., Speech, Sign. Process. 37(4), 553–559 (1989)

    Google Scholar 

  23. J. Mau, Perfect reconstruction modulated filter banks: Fast algorithms and attractive new properties, in Proceedings of the IEEE International Conference Acoustics, Speech and Signal Processing, pp. 225–228 (1993)

    Google Scholar 

  24. A. Mertins, Signal Analysis, Filter Banks, Time-Frequency Transforms and Applications (John Wiley, 1999)

    Google Scholar 

  25. A. Mouffak, M.F. Belbachir, Noncausal forward/backward two-pass IIR digital filters in real time. Turk J. Elec. Eng. Comput. Sci. 20(5), 769–786 (2012)

    Google Scholar 

  26. P.M. Naini, Digital watermarking using MATLAB. in Engineering Education and Research Using MATLAB, ed. by A. Assi (InTech, 2011) Chap. 20

    Google Scholar 

  27. T.Q. Nguyen, A Tutorial on Filter Banks and Wavelets (University of Wisconsin, ECE Department, 1995). http://www.cs.tau.ac.il/~amir1/WAVELET/PAPERS/nguyen95tutorial.pdf

  28. T.Q. Nguyen, P.P. Vaidyanathan, Two channel perfect reconstruction IR QMF structures which yield linear phase analysis and synthesis filters. IEEE T. Acoust., Speech, Sign. Process. 476–492 (1989)

    Google Scholar 

  29. S. Oraintara, D. Trans, P.N. Heller, T.Q. Nguyen, Lattice structure for regular paraunitary linear-phase filterbanks and M-band orthogonal symmetric wavelets. IEEE T. Sign. Process. 49(11), 2659–2672 (2001)

    Google Scholar 

  30. W. Pennebaker, J. Mitchell, JPEG: Still Image Data Compression Standard (Springer, 1992)

    Google Scholar 

  31. C.I. Podilchuk, E.J. Delp, Digital watermarking algorithms and applications. IEEE Sign. Process. Mgz. 18(4), 33–46 (2001)

    Google Scholar 

  32. R.L. Queiroz, T.Q. Nguyen, K.R. Rao, The GenLOT: Generalized linear-phase lapped orthogonal transform. IEEE T. Sign. Process. 44(3), 497–507 (1996)

    Google Scholar 

  33. R.L. Queiroz, T.D. Tran, Lapped transforms for image compression, in Handbook on Transforms and Data Compression (CRC, 2000), pp. 1–64

    Google Scholar 

  34. C.M. Rader, The rise and fall of recursive digital filters. IEEE Sign. Process. Mgz. 46–49 (2006)

    Google Scholar 

  35. K.R. Rao, P. Yip, Discrete Cosine Transform. Algorithms, Advantages, Applications (Academic Press, 1990)

    Google Scholar 

  36. P.A. Regalia, S.K. Mitra, P.P. Vaidyanathan, The digital all-pass filter: A versatile signal processing building block. Proc. IEEE 76(1), 19–37 (1988)

    Google Scholar 

  37. K. Sankar, Using Toeplitz Matrices in MATLAB (2007). http://www.dsplog.com/2007/04/21/using-toeplitz-matrices-in-matlab/

  38. I.W. Selesnick, Formulas for orthogonal IIR wavelet filters. IEEE T. Sign. Process. 46(4), 1138–1141 (1998)

    Google Scholar 

  39. U. Sezen, Perfect reconstruction IIR digital filter banks supporting nonexpansive linear signal extensions. IEEE T. Sign. Process., 57(6), 2140–2150 (2009)

    Google Scholar 

  40. U. Sezen, S.S. Lawson, Anticausal inverses for digital filter banks, in Proc. Eur. Conf. Circuit Theory Des. 1–229 to 1–232 (2001)

    Google Scholar 

  41. M.J.T. Smith, T.P.III Barnwell, Exact reconstruction techniques for tree-structured subband coders. IEEE T. Acoust., Speech Sign. Process. 34(3), 434–441 (1986)

    Google Scholar 

  42. A.K. Soman, P.P. Vaidyanathan, T.Q. Nguyen, Linear phase paraunitary filter banks: Theory, factorizations and design. IEEE T. Sign. Process. 41(12), 3480–3496 (1993)

    Google Scholar 

  43. T.D. Tran, R.L. Queiroz, T.Q. Nguyen, Linear-phase perfect reconstruction filter bank: Lattice structure, design, and application in image coding. IEEE T. Sign. Process. 48(1), 133–147 (2000)

    Google Scholar 

  44. P.P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial. Proc IEEE 78(1), 56–93 (1990)

    Google Scholar 

  45. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, 1992)

    Google Scholar 

  46. P.P. Vaidyanathan, T. Chen, Structures for anticausal inverses and application in multirate filter banks. IEEE T. Sign. Process. 46(2), 507–514 (1998)

    Google Scholar 

  47. P.P. Vaidyanathan, S.K. Mitra, Y. Neuvo, A new approach to the realization of low-sensitivity IIR digital filters. IEEE T. Acoust., Speech, Sign. Process. 34(2), 350–361 (1986)

    Google Scholar 

  48. M. Vetterli, C. Herley, Wavelets and filter banks; theory and design. IEEE T. Sign. Process. 40(9), 2207–2232 (1992)

    Google Scholar 

  49. M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice Hall, 1995)

    Google Scholar 

  50. A.B. Watson, Image compression using the discrete cosine transform. Math. J. 4(1), 81–88 (1994)

    Google Scholar 

  51. Z. Xu, A. Makur, On the closeness of the space spanned by the lattice structures for a class of linear phase perfect reconstruction filter banks. Sign. Process. 90, 292–302 (2010)

    Google Scholar 

  52. X. Zhang, T. Yoshikawa, Design of two-channel IIR Linear phase PR filter banks. Sign. Process. 72, 167–175 (1999)

    Google Scholar 

  53. D. Zhou, A review of polyphase filter banks and their application. Technical report, Air Force Technical USA, 2006. AFRL-IF-RS-TR–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Maria Giron-Sierra .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Giron-Sierra, J.M. (2017). Filter Banks. In: Digital Signal Processing with Matlab Examples, Volume 2. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2537-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2537-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2536-5

  • Online ISBN: 978-981-10-2537-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics