Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 9183 Accesses

Abstract

Practical signal processing frequently involves statistical aspects. If you are using a sensor to measure say temperature, or light, or pressure, or anything else, you usually get a signal with noise in it, and then there is a problem of noise removal. The first sections of the chapter focus on probability distributions and related concepts and tools. Then, there is a section on Monte Carlo methods. Then, after a short section on the central limit, there is a long section on Baye’s rule. This is followed by another long section on Markov processes. Finally, the chapter concludes with an introduction to MATLAB tools for distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Al-Fawzan, Methods for Estimating the Parameters of TheWeibull Distribution (King Abdulaziz City for Science and Technology, Saudi Arabia, 2000). http://interstat.statjournals.net/YEAR/2000/articles/0010001.pdf

  2. S.J. Almalki, S. Nadarajah, Modifications of the Weibull distribution: A review. Reliab. Eng. Syst. Saf. 124, 32–55 (2014)

    Article  Google Scholar 

  3. E. Anderson, Monte Carlo Methods and Importance Sampling. Lecture Notes, UC Berkeley (1999). http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf

  4. C. Andrieu, N. De Freitas, A. Doucet, M.I. Jordan, An introduction to MCMC for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

    Article  MATH  Google Scholar 

  5. G. Arroyo-Figueroa, L.E. Suear, A temporal Bayesian network for diagnosis and prediction, in Proceedings 15th Conference Uncertainty in Artificial Intelligence (Morgan Kaufmann Publishers Inc, 1999), pp. 13–20

    Google Scholar 

  6. A. Assenza, M. Valle, M. Verleysen, A comparative study of various probability density estimation methods for data analysis. Int. J. Comput. Intell. Syst. 1(2), 188–201 (2008)

    Article  Google Scholar 

  7. I. Beichl, F. Sullivan, The Metropolis algorithm. Comput. Sci. Eng. 2(1), 65–69 (2000)

    Article  Google Scholar 

  8. I. Ben-Gal, Bayesian networks, in Encyclopedia of Statistics in Quality & Reliability, ed. by F. Faltin, R. Kenett, F. Ruggeri (Wiley, Chichester, 2007)

    Google Scholar 

  9. M. Bergomi, C. Pedrazzoli, Bayesian Statistics: Computational Aspects. Lecture Notes, ETH Zurich (2008). http://www.rw.ethz.ch/dmath/research/groups/sfs-old/teaching/lectures/FS_/seminar/8.pdf

  10. J.M. Bernardo, A.F.M. Smith, Bayesian Theory (Wiley, New York, 2000)

    MATH  Google Scholar 

  11. G. Bohling, Applications of Bayes’ Theorem. Lecture Notes, Kansas Geological Surveys (2005). http://people.ku.edu/~gbohling/cpe940/BayesOverheads.pdf

  12. S. Borak, W. Härdle, R. Weron, Stable distributions, in Statistical Tools for Finance and Insurance (2005), pp. 21–44

    Google Scholar 

  13. G.E. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  14. L. Breuer. Introduction to Stochastic Processes. Lecture Notes, Univ. Kent (2014). https://www.kent.ac.uk/smsas/personal/lb209/files/notes1.pdf

  15. S. Brooks, A. Gelman, G.L. Jones, X.-L. Meng, Handbook of Markov Chain Mote Carlo (Chapman and Hall/CRC, Boca Raton, 2011)

    Book  MATH  Google Scholar 

  16. H. Bruyninckx, Bayesian Probability. Lecture Notes, KU Leuven, Belgium (2002). http://www.stats.org.uk/bayesian/Bruyninckx.pdf

  17. R. Cano, C. Sordo, J.M. Gutiérrez, Applications of Bayesian networks in meteorology, in Advances in Bayesian Networks, ed. by J.A. Gamez, et al. (Springer, Berlin, 2004), pp. 309–328

    Chapter  Google Scholar 

  18. A.N. Celik, A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renew. Energy 29(4), 593–604 (2004)

    Article  Google Scholar 

  19. V. Cevher, Importance Sampling. Lecture Notes, Rice University (2008). http://www.ece.rice.edu/~vc3/elec633/ImportanceSampling.pdf

  20. W. Chai, B. Vercoe, Folk music classification using hidden Markov models, in Proceedings of International Conference on Artificial Intelligence, vol. 6, no. 4 (2001)

    Google Scholar 

  21. E. Charniak, Bayesian networks without tears. AI Mag. 12(4), 50–63 (1991)

    Google Scholar 

  22. J. Cheng, R. Greiner, Learning bayesian belief network classifiers: algorithms and system, in Advances in Artificial Intelligence, ed. by M. Stroulia (Springer, Berlin, 2001), pp. 141–151

    Chapter  Google Scholar 

  23. S. Chib, E. Greenberg, Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Google Scholar 

  24. K.H. Choo, J.C. Tong, L. Zhang, Recent applications of hidden Markov models in computational biology. Genomics Proteomics Bioinf. 2(2), 84–96 (2004)

    Google Scholar 

  25. Y.J. Chung, Classification of continuous heart sound signals using the ergodic hidden Markov model. Pattern Recogn. Image Anal. 563–570 (2007)

    Google Scholar 

  26. R. Daly, Q. Shen, S. Aitken, Learning Bayesian networks: approaches and issues. Knowl. Eng. Rev. 26(2), 99–157 (2011)

    Article  Google Scholar 

  27. L. Devroye, Sample-based non-uniform random variate generation, in Proceedings ACM 18th Winter Conference on Simulation (1986), pp. 260–265

    Google Scholar 

  28. P. Diaconis, The Markov chain Monte Carlo revolution. Bull. Am. Math. Soc. 46(2), 179–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.R. Eddy, What is a hidden Markov model? Nat. Biotechnol. 22(10), 1315–1316 (2004)

    Article  Google Scholar 

  30. S.E. Fienberg, When did Bayesian inference become “Bayesian”? Bayesian Anal. 1(1), 1–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Gales, S. Young, The application of hidden Markov models in speech recognition. Found. Trends Sig. Process. 1(3), 195–304 (2008)

    Article  MATH  Google Scholar 

  32. J. Gemela, Financial analysis using Bayesian networks. Appl. Stoch. Models Bus. Ind. 17(1), 57–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Haugh, Generating Random Variables and Stochastic Processes. Lecture Notes, Columbia Univ (2010). http://www.columbia.edu/~mh2078/MCS_Generate_RVars.pdf

  34. D. Heckerman, A Tutorial on Learning with Bayesian Networks (Springer, Netherlands, 1998)

    Book  MATH  Google Scholar 

  35. C.C. Heckman, Matrix Applications: Markov Chains and Game Theory. Lecture Notes, Arizona State Univ (2015). https://math.la.asu.edu/~checkman/MatrixApps.pdf

  36. S. Holmes, Maximum Likelihood Estimation. Lecture Notes, Stanford Univ. (2001). http://statweb.stanford.edu/~susan/courses/s200/lect11.pdf

  37. S. Holmes, The Methods of Moments. Lecture Notes, Stanford Univ. (2001). http://statweb.stanford.edu/~susan/courses/s200/lect8.pdf

  38. R.J. Hoppenstein, Statistical Reliability Analysis on Rayleigh Probability Distributions (2000). www.rfdesign.com

  39. S. Intajag, S. Chitwong, Speckle noise estimation with generalized gamma distribution, in Proceedings of IEEE International Joint Conference SICE-ICASE (2006), pp. 1164–1167

    Google Scholar 

  40. D. Joyce, Common Probability Distributions. Lecture Notes, Clark University (2006)

    Google Scholar 

  41. K. Knight. Central Limit Theorems. Lecture Notes, Univ. Toronto (2010). www.utstat.toronto.edu/keith/eco2402/clt.pdf

  42. T. Konstantopoulos, Markov Chains and Random Walks. Lecture Notes (2009). http://159.226.43.108/~wangchao/maa/mcrw.pdf

  43. K.B. Korb, A.E. Nicholson, Bayesian Artificial Intelligence (CRC Press, Boca Raton, 2010)

    MATH  Google Scholar 

  44. M. Kozdron, The Definition of a Stochastic Process. Lecture Notes, Univ. Regina (2006). http://stat.math.uregina.ca/~kozdron/Teaching/Regina/862Winter06/Handouts/revised_lecture1.pdf

  45. M.L. Krieg, A tutorial on Bayesian belief networks. Technical Report DSTO-TN-0403 (2001). http://dspace.dsto.defence.gov.au/dspace/handle/1947/3537

  46. D.P. Kroese, A Short Introduction to Probability. Lecture Notes, Univ. Queensland (2009). http://www.maths.uq.edu.au/~kroese/asitp.pdf

  47. D.P. Kroese, T. Brereton, T. Taimre, Z.I. Botev, Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics 6(6), 386–392 (2014)

    Article  Google Scholar 

  48. A. Krogh, M. Brown, I.S. Mian, K. Sjölander, D. Haussler, Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol. 235(5), 1501–1531 (1994)

    Article  Google Scholar 

  49. E. Limpert, W.A. Stahel, M. Abbt, Log-normal distributions across the sciences: keys and clues. Bioscience 51(5), 341–352 (2001)

    Article  Google Scholar 

  50. R. Linna, Monte Carlo Methods I. Lecture Notes, Aalto University (2012). http://www.lce.hut.fi/teaching/S-114.1100/lect_9.pdf

  51. P. Lucas, Bayesian Networks in Medicine: A Model-based Approach to Medical Decision Making. Lecture Notes, Univ. Aberdeen (2001). http://cs.ru.nl/~peterl/eunite.pdf

  52. D.J. MacKay, Introduction to Monte Carlo methods, in Learning in Graphical Models, ed. by M.I. Jordan (Springer, Berlin, 1998), pp. 175–204

    Chapter  Google Scholar 

  53. V. Manian, Image Processing: Image Restoration. Lecture Notes, Univ. Puerto Rico (2009). www.ece.uprm.edu/~manian/chapter5IP.pdf

  54. D. Margaritis, Learning Bayesian Network Model Structure from Data. Ph.D. thesis, US Army (2003)

    Google Scholar 

  55. W.L. Martinez, A.R. Martines, Computational Statistics Handbook with MATLAB (Chapman & Hall/CRC, Boca Raton, 2007)

    Google Scholar 

  56. G.M. Masters, Renewable and Efficient Electric Power Systems (Wiley, New York, 2013)

    Google Scholar 

  57. I.J. Myung, Tutorial on maximum likelihood estimation. J. Math. Psychol. 47(1), 90–100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. R.E. Neapolitan, Learning Bayesian Networks, vol. 38 (Prentice Hall, Upper Saddle River, 2004)

    Google Scholar 

  59. T.D. Nielsen, F.V. Jensen, Bayesian Networks and Decision Graphs (Springer Science & Business Media, New York, 2009)

    MATH  Google Scholar 

  60. D. Nikovski, Constructing bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE T. Knowl. Data Eng. 12(4), 509–516 (2000)

    Article  Google Scholar 

  61. J.P. Nolan, Stable Distributions, Chap1. Lecture Notes, American University (2014). http://academic2.american.edu/~jpnolan/stable/chap1.pdf

  62. F.N. Nwobi, C.A. Ugomma, A comparison of methods for the estimation of Weibull distribution parameters. Adv. Method. Stat./Metodoloski zvezki 11(1), 65–78 (2014)

    Google Scholar 

  63. P. Olofsson, M. Andersson, Probability, Statistics, and Stochastic Processes (Wiley, Chichester, 2012)

    Book  MATH  Google Scholar 

  64. B.A. Olshausen, Bayesian Probability Theory. Lecture Notes, UC. Berkeley (2004). http://redwood.berkeley.edu/bruno/npb163/bayes.pdf

  65. A.B. Owen, Monte Carlo Theory, Methods and Examples. Lecture Notes, Stanford Univ. (2013). Book in progress. http://statweb.stanford.edu/~owen/mc/

  66. C. Pacati, General Sampling Methods. Lecture Notes, Univ. Siena (2014). http://www.econ-pol.unisi.it/fineng/gensampl_doc.pdf

  67. M. Pinsky, S. Karlin, An Introduction to Stochastic Modeling (Academic Press, Cambridge, 2010)

    MATH  Google Scholar 

  68. C.A. Pollino, C. Henderson, Bayesian Networks: A Guide for Their Application in Natural Resource Management and Policy. Technical Report 14, Landscape Logicpp. (2010)

    Google Scholar 

  69. K. Potter, Methods for Presenting Statistical Information: The Box Plot. Lecture Notes, Univ. Utah (2006). http://www.kristipotter.com/publications/potter-MPSI.pdf

  70. O. Pourret, P. Naïm, B. Marcot (eds.), Bayesian Networks: A Practical Guide to Applications, vol. 73 (Wiley, Chichester, 2008)

    Google Scholar 

  71. R forge distributions Core Team. A guide on probability distributions. Technical report (2009). http://dutangc.free.fr/pub/prob/probdistr-main.pdf

  72. L. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  73. R. Ramamoorthi, Monte Carlo Integration. Lecture Notes, U.C. Berkeley (2009). https://inst.eecs.berkeley.edu/~cs/fa09/lectures/scribe-lecture4.pdf

  74. N. Ramanathan, Applications of Hidden Markov Models. Lecture Notes, University of Maryland (2006). http://www.cs.umd.edu/~djacobs/CMSC828/ApplicationsHMMs.pdf

  75. M. Richey, The evolution of Markov chain Monte Carlo methods. Am. Math. Mon. 117(5), 383–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. B.D. Ripley, Computer-Intensive Statistics. Lecture Notes, Oxford Univ (2008). http://www.stats.ox.ac.uk/~ripley/APTS2012/APTS-CIS-lects.pdf

  77. C. Robert, G. Casella, A short history of Markov chain Monte Carlo: Subjective recollections from incomplete data. Stat. Sci. 26(1), 102–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Stahl, The evolution of the normal distribution. Math. Mag. 79(2), 96–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. F.W. Scholz, Central Limit Theorems and Proofs. Lecture Notes, Univ. Washington (2011). http://www.stat.washington.edu/fritz/DATAFILES394_/CLT.pdf

  80. R. Seydel, Tools for Computational Finance (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  81. S.J. Sheather, Density estimation. Stat. Sci. 19(4), 588–597 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  82. K. Sigman, Acceptance-Rejection Method. Lecture Notes, Columbia University (2007). www.columbia.edu/~ks20/4703-Sigman-Notes-ARM.pdf

  83. B.W. Silverman, Density Estimation for Statistics and Data Analysis (2002). https://ned.ipac.caltech.edu/level5/March02/Silverman/paper.pdf

  84. M. Sköld, Computer Intensive Statistical Methods. Lecture Notes, Lund University (2006)

    Google Scholar 

  85. M. Stamp, A Revealing Introduction to Hidden Markov Models. Lecture Notes, San Jose State University (2012). http://gcat.davidson.edu/mediawiki-1.19.1/images/2/23/HiddenMarkovModels.pdf

  86. A. Stassopoulou, M. Petrou, J. Kittler, Application of a Bayesian network in a GIS based decision making system. Int. J. Geogr. Inf. Sci. 12(1), 23–46 (1998)

    Article  Google Scholar 

  87. V. Stelzenmüller, J. Lee, E. Garnacho, S.I. Rogers, Assessment of a Bayesian belief network-GIS framework as a practical tool to support marine planning. Mar. Pollut. Bull. 60(10), 1743–1754 (2010)

    Article  Google Scholar 

  88. B. Stenger, V. Ramesh, N. Paragios, F. Coetzee, J.M. Buhmann, Topology free hidden Markov models: Application to background modeling, in Proceedings of IEEE International Conference on Computer Vision, vol. 1 (2001), pp. 294–301

    Google Scholar 

  89. T.A. Stephenson, An introduction to bayesian network theory and usage. Technical report, IDIAP Research, Switzerland (2000). http://publications.idiap.ch/downloads/reports/2000/rr00-03df

  90. M. Steyvers, Computational Statistics with MATLAB. Lecture Notes, UC Irvine (2011). http://www.cidlab.com/205c/205C_v4.pdf

  91. D.B. Thomas, W. Luk, P.H. Leong, J.D. Villasenor, Gaussian random number generators. ACM Comput. Surv. (CSUR) 39(4), 11 (2007)

    Article  Google Scholar 

  92. C. Tomasi, Estimating Gaussian Mixture Models with EM. Lecture Notes, Duke University (2004). https://www.cs.duke.edu/courses/spring04/cps196.1/handouts/EM/tomasiEM.pdf

  93. B. Vidakovic, MCMC Methodology. Lecture Notes, Georgia Tech (2014). http://www2.isye.gatech.edu/~brani/isyebayes/bank/handout10.pdf

  94. P. Von Hilgers, A.N. Langville, The five greatest applications of Markov chains, in Proceedings of the Markov Anniversary Meeting (Boston Press, Boston, 2006)

    Google Scholar 

  95. R. Waagepetersen, A quick introduction to Markov chains and Markov chain Monte Carlo (revised version). Aalborg Univ. (2007). http://people.math.aau.dk/~rw/Papers/mcmc_intro.pdf

  96. C. Walk, Hand-book of statistical distributions for experimentalists. Technical report, University of Stockholm (2007). Internal Report

    Google Scholar 

  97. G. Wang, Q. Dong, Z. Pan, X. Zhao, J. Yang, C. Liu, Active contour model for ultrasound images with Rayleigh distribution. Mathematical Problems in Engineering, ID 295320 (2014)

    Google Scholar 

  98. J.C. Watkins, Maximum Likelihood Estimation. Lecture Notes, University of Arizona (2011). http://math.arizona.edu/~jwatkins/o-mle.pdf

  99. P. Weber, G. Medina-Oliva, C. Simon, B. Iung, Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Eng. Appl. Artif. Intell. 25(4), 671–682 (2012)

    Article  Google Scholar 

  100. B.J. Yoon, Hidden Markov models and their applications in biological sequence analysis. Curr. Genomics 10(6), 402–415 (2009)

    Article  Google Scholar 

  101. G.A. Young, M2S1 Lecture Notes. Lecture Notes, Imperial College London (2011). www2.imperial.ac.uk/~ayoung/m2s1/M2S1.PDF

  102. A.Z. Zambom, R. Dias, A Review of Kernel Density Estimation with Applications to Econometrics (2012). arXiv preprint arXiv:1212.2812

  103. L. Zhang, Applied Statistics I. Lecture Notes, University of Utah (2008). http://www.math.utah.edu/~lzhang/teaching/3070summer/DailyUpdates/jul1/lecture_jul1.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Maria Giron-Sierra .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Giron-Sierra, J.M. (2017). Statistical Aspects. In: Digital Signal Processing with Matlab Examples, Volume 1. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2534-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2534-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2533-4

  • Online ISBN: 978-981-10-2534-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics