Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 332 Accesses

Abstract

The research area of bionanosensor networks has emerged at the intersection of network engineering and bionanotechnology. Bionanosensor networks consist of bionanosensors that are massively distributed in the monitoring environment. Since bionanosensors are made of biomaterials and capable of processing biochemical signals, bionanosensor networks may be used to develop biomedical applications such as inbody bionanosensor networks for human health monitoring. In the first chapter of this book, we provide a background to the bionanosensor network research, illustrate the architecture of bionanosensor networks, and review related research areas to highlight the potential of bionanosensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Agoulmine, K. Kim, S. Kim, T. Rim, J. Lee, M. Meyyappan, Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wirel. Commun. 19(5), 42–51 (2012)

    Article  Google Scholar 

  2. A. Aijaz, Opportunistic routing in diffusion-based molecular nanonetworks. IEEE Wirel. Commun. Lett. 4(3), 321–324 (2015)

    Article  Google Scholar 

  3. A. Aijaz, A.-H. Adhvami, Error performance of diffusion-based molecular communication using pulse-based modulation. IEEE Trans. NanoBiosci. 14(1), 146–151 (2015)

    Article  Google Scholar 

  4. D. Akin, J. Sturgis, K. Ragheb, D. Sherman, K. Burkholder, J.P. Robinson, A.K. Bhunia, S. Mohammed, R. Bashir, Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2, 441–449 (2007)

    Article  Google Scholar 

  5. I.F. Akyildiz, F. Brunetti, C. Blazquez, Nanonetworks: a new communication paradigm. Comput. Netw. 52, 2260–2279 (2008)

    Article  Google Scholar 

  6. I.F. Akyildiz, J.M. Jornet, The internet of nano-things. IEEE Wirel. Commun. 17(6), 58–63 (2010)

    Article  Google Scholar 

  7. I.F. Akyildiz, M. Pierobon, S. Balasubramaniam, Y. Koucheryavy, The internet of bio-nano things. IEEE Commun. Mag. 53(3), 32–40 (2015)

    Article  Google Scholar 

  8. N.A. Ali, M. Abu-Elkheir, Internet of nano-things healthcare applications: requirements, opportunities, and challenges, in Proceedings of the IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (2015), pp. 9–14

    Google Scholar 

  9. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall, London, 2006)

    Google Scholar 

  10. G. Aminian, H. Arjmandi, A. Gohari, M. Nasiri-Kenari, U. Mitra, Capacity of diffusion-based molecular communication networks over lti-poisson channels. IEEE Trans. Mol. Biol. Multi-scale Commun. 1(2), 188–201 (2015)

    Article  Google Scholar 

  11. A. Arkin, Setting the standard in synthetic biology. Nat. Biotechnol. 26(7), 771–774 (2008)

    Article  Google Scholar 

  12. B. Atakan, O.B. Akan, On molecular multiple-access, broadcast and relay channels in nanonetworks, in International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2008) (2008)

    Google Scholar 

  13. B. Atakan, O.B. Akan, Deterministic capacity of information flow in molecular nanonetworks. Nano Commun. Netw. 1, 31–42 (2010)

    Article  Google Scholar 

  14. B. Atakan, O.B. Akan, S. Balasubramaniam, Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun. Mag. 50(1), 28–34 (2012)

    Article  Google Scholar 

  15. Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, K. Kataoka, Preparation and biological characterization of polymetric micelle drug carriers with intracellular ph-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 16, 122–130 (2005)

    Article  Google Scholar 

  16. S. Balasubramaniam, J. Kangasha, Realizing the internet of nano things: challenges, solutions, and applications. Computer 46(2), 62–68 (2013)

    Article  Google Scholar 

  17. S. Basu, Y. Gerchman, C.H. Collins, F.H. Arnold, R. Weiss, A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)

    Article  Google Scholar 

  18. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro, An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)

    Article  Google Scholar 

  19. P. Bogdan, G. Wei, R. Marculescu, Modeling populations of micro-robots for biological applications, in IEEE International Conference on Communications (ICC) Workshop on Molecular and Nano-scale Communications (MoNaCom 2012) (2012), pp. 6188–6192

    Google Scholar 

  20. Y. Chen, P. Kosmas, P.S. Anwar, L. Huang, A touch-communication framework for drug delivery based on a transient microbot system. IEEE Trans. Nanobiosci. 14(4), 397–408 (2015)

    Article  Google Scholar 

  21. H.-Y. Chuang, M. Hofree, T. Ideker, A decade of systems biology. Cell Dev. Biol. 26, 721–744 (2010)

    Article  Google Scholar 

  22. L.C. Cobo, I.F. Akyildiz, Bacteria-based communication in nanonetworks. Nano Commun. Netw. 1(4), 244–256 (2010)

    Article  Google Scholar 

  23. M. Csete, J. Doyle, Bow ties, metabolism and disease. Trends Biotechnol. 9, 446–450 (2004)

    Article  Google Scholar 

  24. F. Dressler, S. Fischer, Connecting in-body nano communication with body area networks: Challenges and opportunities of the internet of nano things. Nano Commun. Netw. 6(2), 29–38 (2015)

    Article  Google Scholar 

  25. A.W. Eckford, Nanoscale communication with brownian motion, in Proceedings of the 41st Annual Conference on Information Sciences and Systems (2007), pp. 160–165

    Google Scholar 

  26. A.W. Eckford, N. Farsad, S. Hiyama, Y. Moritani, Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport, in IEEE International Conference on Nanotechnology (2010), pp. 854–858

    Google Scholar 

  27. A. Einolghozati, M. Sardari, A. Beirami, F. Fekri, Consensus problem under diffusion-based molecular communication. in Proceedings of the 45th Annual Conference on Information Sciences and Systems (CISS) (2011), pp. 1–6

    Google Scholar 

  28. M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  29. R.F. Fakhrullin, A.I. Zamaleeva, R.T. Minullina, S.A. Konnova, V.N. Paunov, Cyborg cells: functionalisation of living cells with polymers and nanomaterials. R. Soc. Chem. Rev. 41, 4189–4206 (2012)

    Article  Google Scholar 

  30. L. Felicetti, M. Femminella, G. Reali, T. Nakano, A.V. Vasilakos, Tcp-like molecular communications. IEEEE J. Sel. Areas Commun. 32(12), 2354–2367 (2014)

    Article  Google Scholar 

  31. T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in escherichia coli. Nature 403, 339–342 (2000)

    Article  Google Scholar 

  32. A. Goel, V. Vogel, Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 3, 465–475 (2008)

    Article  Google Scholar 

  33. A. Guney, B. Atakan, O.B. Akan, Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Trans. Mob. Comput. 11(3), 353–366 (2011)

    Article  Google Scholar 

  34. H. Hayashi, K. Kono, T. Takagishi, Temperature-controlled release property of phospholipid vesicles bearing a thermo-sensitive polymer. Biochimica et Biophysica Acta 1280, 127–134 (1996)

    Article  Google Scholar 

  35. S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular communication. 2005 NSTI Nanotechnol. Conf. 3, 392–395 (2005)

    Google Scholar 

  36. S. Hiyama, Y. Moritani, Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun. Netw. 1(1), 20–30 (2010)

    Article  Google Scholar 

  37. J.-T. Huang, H.-Y. Lai, Y.-C. Lee, C.-H. Lee, P.-C. Yeh, Distance estimation in concentration-based molecular communications, in Proceedings of the IEEE Global Communications Conference (GLOBECOM) (2013), pp. 2587–2591

    Google Scholar 

  38. W.D. Jang, N. Nishiyama, G.D. Zhang, A. Harada, D.L. Jiang, S. Kawauchi, Y. Morimoto, M. Kikuchi, H. Koyama, T. Aida, K. Kataoka, Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with polyethylene glycol to enhance intracellular photodynamic efficacy. Angewandte Chemie International Edition 44(3), 419–423 (2005)

    Article  Google Scholar 

  39. S. Kadloor, R.S. Adve, A.W. Eckford, Molecular communication using brownian motion with drift. IEEE Trans. NanoBiosci. 11(2), 89–99 (2012)

    Article  Google Scholar 

  40. H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor Networks (Wiley, New Jersey, 2005)

    Google Scholar 

  41. K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, Y. Sakurai, Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on - off regulation of insulin release. J. Am. Chem. Soc. 120, 12694–12695 (1998)

    Article  Google Scholar 

  42. A. Kiourti, K.A. Psathas, K.S. Nikita, Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges. Bioelectromagnetics 35(1), 1–15 (2014)

    Article  Google Scholar 

  43. H. Kitano, Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  44. H. Kitano, Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004)

    Article  Google Scholar 

  45. H. Kitano, Towards a theory of biological robustness. Mol. Syst. Biol. 3(1) (2007). doi:10.1038/msb4100179

  46. H.T. Kung, D. Vlah, Efficient location tracking using sensor networks, in IEEE Wireless Communications and Networking Conference (WCNC) (2003)

    Google Scholar 

  47. M. Kuscu, B. Akan, Modeling and analysis of sinw biofet as molecular antenna for bio-cyber interfaces towards the internet of bio-nanothings, in Proceedings of the IEEE World Forum on Internet of Things (WF-IoT) (2015)

    Google Scholar 

  48. P. Lio, S. Balasubramaniam, Opportunistic routing through conjugation in bacteria communication nanonetwork. Nano Commun. Netw. 3, 36–45 (2012)

    Article  Google Scholar 

  49. K. Ma, Y. Zhang, W. Trappe, Managing the mobility of a mobile sensor network using network dynamics. IEEE Trans. Parallel Distrib. Syst. 19(1), 106–120 (2008)

    Article  Google Scholar 

  50. M.U. Mahfuz, D. Makrakis, H.T. Mouftah, On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Commun. Netw. 1(4), 289–300 (2010)

    Article  Google Scholar 

  51. G. Maltzahn, J.-H. Park, K.Y. Lin, N. Singh, C. Schwoppe, R. Mesters, W.E. Berdel, E. Ruoslahti, M.J. Sailor, S.N. Bhatia, Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011)

    Article  Google Scholar 

  52. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    Google Scholar 

  53. N. Michelusi, U. Mitra, Capacity of electron-based communication over bacterial cables: The full-csi case with binary inputs, in Proceedings of the IEEE International Conference on Communications (ICC) (2015), pp. 1072–1077

    Google Scholar 

  54. M.J. Moore, T. Nakano, Addressing by beacon distances using molecular communication. Nano Commun. Netw. 2(2–3), 161–173 (2011)

    Article  Google Scholar 

  55. M. J. Moore, T. Nakano, Synchronization of inhibitory molecular spike oscillators, in International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2011) (2011), pp. 183–195

    Google Scholar 

  56. M.J. Moore, T. Nakano, A. Enomoto, T. Suda, Measuring distance from single spike feedback signals in molecular communication. IEEE Trans. Signal Process. 60(7), 3576–3587 (2012)

    Article  MathSciNet  Google Scholar 

  57. M.J. Moore, T. Suda, K. Oiwa, Molecular communication: modeling noise effects on information rate. IEEE Trans. NanoBiosci. 8(2), 169–180 (2009)

    Article  Google Scholar 

  58. M. Movahednasab, M. Soleimanifar, A. Gohari, M.N. Kenari, U. Mitra, Adaptive molecule transmission rate for diffusion based molecular communication, in Proceedings of the IEEE International Conference on Communications (ICC) (2015), pp. 1066–1071

    Google Scholar 

  59. T. Nakano, A. Eckford, T. Haraguchi, Molecular Communication (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  60. T. Nakano, Y. Okaie, A.V. Vasilakos, Transmission rate control for molecular communication among biological nanomachines. IEEE J. Sel. Areas Commun. 31(12), 835–846 (2013)

    Article  Google Scholar 

  61. T. Nakano, S. Kobayashi, T. Suda, Y. Okaie, Y. Hiraoka, T. Haraguchi, Externally controllable molecular communication. IEEE J. Sel. Areas Commun. (JSAC) 32(12), 1–15 (2014)

    Article  Google Scholar 

  62. T. Nakano, J.Q. Liu, Design and analysis of molecular relay channels: an information theoretic approach. IEEE Trans. NanoBiosci. 9(3), 213–221 (2010)

    Article  Google Scholar 

  63. T. Nakano, M. Moore, F. Wei, A.V. Vasilakos, J.W. Shuai, Molecular communication and networking: opportunities and challenges. IEEE Trans. NanoBiosci. 11(2), 135–148 (2012)

    Article  Google Scholar 

  64. T. Nakano, M. J. Moore, Y. Okaie, A. Enomoto, T. Suda, Cooperative drug delivery through molecular communication among biological nanomachines, in IEEE International Workshop on Molecular and Nanoscale Communications (MoNaCom) (2013), pp. 809–812

    Google Scholar 

  65. T. Nakano, Y. Okaie, J.Q. Liu, Channel model and capacity analysis of molecular communication with brownian motion. IEEE Commun. Lett. 16(6), 797–800 (2012)

    Article  Google Scholar 

  66. T. Nakano, J. Shuai, Repeater design and modeling for molecular communication networks. Proceedings IEEE INFOCOM (International Conference on Computer Communications) Workshop on Molecular and Nano-scale Communications (MoNaCom 2011) (2011), pp. 501–506

    Google Scholar 

  67. T. Nakano, T. Suda, Y. Okaie, M.J. Moore, A.V. Vasilakos, Molecular communication among biological nanomachines: a layered architecture and research issues. IEEE Trans. NanoBiosci. 13(3), 169–197 (2014)

    Article  Google Scholar 

  68. A. Noel, K.C. Cheung, R. Schober, Bounds on distance estimation via diffusive molecular communication, in Proceedings of the IEEE Global Communications Conference (GLOBECOM) (2014), pp. 2813–2819

    Google Scholar 

  69. S.J. Park, S.-H. Park, S. Cho, D.-M. Kim, Y. Lee, S.Y. Ko, Y. Hong, H.E. Choy, J.-J. Min, J.-O Park, S. Park, New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci. Rep. 3, pp. 1–8 (2013)

    Google Scholar 

  70. M. Pierobon, I.F. Akyildiz, A physical end-to-end model for molecular communication in nanonetworks. IEEE J. Sel. Areas Commun. 28(4), 602–611 (2010)

    Article  Google Scholar 

  71. M. Pierobon, I.F. Akyildiz, Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Trans. Signal Process. 59, 2532–2547 (2011)

    Article  MathSciNet  Google Scholar 

  72. P.E.M. Purnick, R. Weiss, The second wave of synthetic biology: from modules to systems. Nat. Rev. 10, 410–422 (2009)

    Article  Google Scholar 

  73. X. Wang, M.D. Higgins, M.S. Leeson, Distance estimation schemes for diffusion based molecular communication systems. IEEE Commun. Lett. 19(3), 399–402 (2015)

    Article  Google Scholar 

  74. P.E.M. Purnick, R. Weiss, The second wave of synthetic biology from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009)

    Article  Google Scholar 

  75. R. Rao, G. Kesidis, Purposeful mobility for relaying and surveillance in mobile ad hoc sensor networks. IEEE Trans. Mob. Comput. 3(3), 225–232 (2004)

    Article  Google Scholar 

  76. H. ShahMohammadian, G. Messier, S. Magierowski, Blind synchronization in diffusion-based molecular communication channels. IEEE Commun. Lett. 17(11), 2156–2159 (2013)

    Article  Google Scholar 

  77. K. Sohraby, D. Minoli, T. Znati, Wireless Sensor Networks: Technology, Protocols, and Applications (Wiley, New Jersy, 2007)

    Google Scholar 

  78. K.V. Srinivas, R.S. Adve, A.W. Eckford, Molecular communication in fluid media: the additive inverse gaussian noise channel. IEEE Trans. Inf. Theory 58(7), 4678–4692 (2012)

    Article  MathSciNet  Google Scholar 

  79. T. Suda, M.J. Moore, T. Nakano, R. Egashira, A. Enomoto, Exploratory research on molecular communication between nanomachines, in Proceeding of the ACM Conference on Genetic and Evolutionary Computation (GECCO) (2005)

    Google Scholar 

  80. V.P. Torchilin, Recent advances with liposome as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005)

    Article  Google Scholar 

  81. G. Wei, P. Bogdan, R. Marculescu, Bumpy rides: modeling the dynamics of chemotactic interacting bacteria. IEEE J. Sel. Areas Commun. (JSAC) 31(12), 879–890 (2013)

    Article  Google Scholar 

  82. G. Wei, P. Bogdan, R. Marculescu, Efficient modeling and simulation of bacteria-based nanonetworks with bnsim. IEEE J. Sel. Areas Commun. (JSAC) 31(12), 868–878 (2013)

    Article  Google Scholar 

  83. R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, I. Netravali, Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat. Comput. 2(1), 47–84 (2003)

    Article  Google Scholar 

  84. E. Xu, Z. Ding, S. Dasgupta, Target tracking and mobile sensor navigation in wireless sensor networks. IEEE Trans. Mob. Comput. 12(1), 177–186 (2013)

    Article  Google Scholar 

  85. Y. Xu, J. Winter, W.C. Lee, Prediction-based strategies for energy saving in object tracking sensor networks, in IEEE International Conference on Mobile Data Management (MDM’04) (2004)

    Google Scholar 

  86. J.W. Yoo, D.J. Irvine, D.E. Discher, S. Mitragotri, Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10(7), 521–535 (2011)

    Article  Google Scholar 

  87. R. Yoshida, Y. Kaneko, K. Sakai, K. Okano, Y. Sak, Y, Sakurai. H. Bae, S.W. Kim, Positive thermosensitive pulsatile drug release using negative thermosensitive hydrogels. J. Controlled Release 32, 97–102 (1994)

    Google Scholar 

  88. L. You, R.S. Cox III, R. Weiss, F.H. Arnold, Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004)

    Article  Google Scholar 

  89. M. Younis, K. Akkaya, Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Netw. 6, 621–655 (2008)

    Article  Google Scholar 

  90. W. Zhang, G. Cao, DCTC: Dynamic convoy tree-based collaboration for target tracking in sensor networks. IEEE Trans. Wirel. Commun. 3(5), 1689–1701 (2004)

    Article  Google Scholar 

  91. Y. Zou, K. Chakrabarty, Distributed mobility management for target tracking in mobile sensor networks. IEEE Trans. Mob. Comput. 6(8), 872–887 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Okaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Okaie, Y., Nakano, T., Hara, T., Nishio, S. (2016). Introduction. In: Target Detection and Tracking by Bionanosensor Networks. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-2468-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2468-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2467-2

  • Online ISBN: 978-981-10-2468-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics