Skip to main content

Chinese Medicines in Neurological Diseases: Pharmacological Perspective

  • Chapter
  • First Online:
Evidence-based Research Methods for Chinese Medicine
  • 759 Accesses

Abstract

Neurological diseases are a wide range of diseases affecting central and peripheral nervous system. Stroke, Alzheimer’s disease (AD), and Parkinson’s disease (PD) are the most common and challenging neurological diseases which lack effective treatment. Chinese medicine (CM) is an ancient yet still alive medical system widely used by Asian people for preventing and treating diseases. The symptoms of stroke, AD, and PD have been described in CM books as early as 2000 years ago. The causes as well as the treatment principles for these diseases are also mentioned in the classic CM books. According to CM theory, the diseases are caused by disharmony of Yin and Yang, thus the treatment strategy is to restore the balance. Throughout the CM history, the etiology and therapy for stroke, AD, and PD have been continuously developed. Currently, Up to 20–40 % of patients with above-mentioned diseases are receiving CM treatment in China, indicating the wide acceptance of CM for the treatment of neurological diseases (Liu in J Am Med Dir Assoc, 2015 [1]; Rajendran et al. in Neurology 57:790–4, 2001 [2]). The widely used formulas for neurological disease treatment include: “Qi Fu Decoction”, and “Tongqiao Huoxue Decoction” for Dementia; “Zhengan Xifeng Decoction”, “Angong Niuhuang Wan” “Tongqiao Huoxue decoction”, “Taohong Siwu Decoction” for Stroke; “Zhengan Xifeng Decoction”, “Lingjiao Gouteng Decoction”, “Dao Tan Decoction”, “Renshen Yangrong Decoction”, and “Dihuang Yinzi Decoction” for PD. Numerous studies have reported the efficacy of CM in the clinic treatment of stroke, AD, and PD. However, most of the clinical studies lack the experimental supports from diseases models and the reports were mainly written in Chinese, thus limiting the recognition of CM by worldwide researchers. With the modernization of CM during the past decades, the experimental data of CM-originated materials (formula, herb extract, and single compounds) on the stroke, AD, and PD models are accumulating rapidly, providing important scientific evidence for the clinic use of CM for treating neurological diseases. This chapter introduces the basic theory of CM for treating stroke, AD, and PD, lists the currently used experimental diseases models for the evaluation of pharmacological activity of CM, and summarizes the CM-originated materials with protective effects in these disease models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu T, Li X, Zou ZY, Li C. The prevalence and determinants of using traditional chinese medicine among middle-aged and older chinese adults: results from the china health and retirement longitudinal study. J Am Med Dir Assoc. 2015.

    Google Scholar 

  2. Rajendran PR, Thompson RE, Reich SG. The use of alternative therapies by patients with Parkinson’s disease. Neurology. 2001;57(5):790–4.

    Article  CAS  PubMed  Google Scholar 

  3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation. 2015;131(4):e29.

    Article  PubMed  Google Scholar 

  4. Junhua Z, Menniti-Ippolito F, Xiumei G, Firenzuoli F, Boli Z, Massari M, et al. Complex traditional chinese medicine for poststroke motor dysfunction a systematic review. Stroke. 2009;40(8):2797–804.

    Article  PubMed  Google Scholar 

  5. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J. 2003;44(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  6. Endres M DU. Neuroprotective strategies in animal and in vitro-models of neuronal damage: ischemiia and stroke. In: Alzheimer C, editor. Molecular and cellular biology of neuroprotection in CNS. New York: Kluwer Academic and Landes Bioscience; 2003. 513:455–7.

    Google Scholar 

  7. Myers RE, Yamaguchi SI. Nervous system effects of cardiac arrest in monkeys: preservation of vision. Arch Neurol. 1977;34(2):65–74.

    Article  CAS  PubMed  Google Scholar 

  8. Nemoto EM, Bleyaert AL, Stezoski S, Moossy J, Rao GR, Safar P. Global brain ischemia: a reproducible monkey model. Stroke. 1977;8(5):558–64.

    Article  CAS  PubMed  Google Scholar 

  9. Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W. Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral commoncarotid arteries. J Cereb Blood Flow Metab. 1988;8(4):474–85.

    Article  CAS  PubMed  Google Scholar 

  10. De Ley G, Weyne J, Demeester G, Stryckmans K, Goethals P, Leusen I. Streptokinase treatment versus calcium overload blockade in experimental thromboembolic stroke. Stroke. 1989;20(3):357–61.

    Article  PubMed  Google Scholar 

  11. Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke. 1991;22(7):877–83.

    Article  CAS  PubMed  Google Scholar 

  12. Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437–53.

    PubMed  PubMed Central  Google Scholar 

  13. Endres M, Namura S, Shimizu-Sasamata M, Waeber C, Zhang L, Gomez-Isla T, et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab. 1998;18(3):238–47.

    Article  CAS  PubMed  Google Scholar 

  14. MacLellan CL, Silasi G, Auriat AM, Colbourne F. Rodent models of intracerebral hemorrhage. Stroke. 2010;41(10 suppl 1):S95–8.

    Article  PubMed  Google Scholar 

  15. Belayev L. Blood injection intracerebral hemorrhage mouse model. In: Chen J, Xu Z, Xu X-M, Zhang J, editors. Animal models of acute neurological injuries. Humana Press; 2009. p. 349–57.

    Google Scholar 

  16. Tasca CI, Dal-Cim T, Cimarosti H. In vitro oxygen–glucose deprivation to study ischemic cell death. Neuronal cell death. Springer; 2015. p. 197–210.

    Google Scholar 

  17. Newcomb-Fernandez JK, Zhao X, Pike BR, Wang KK, Kampfl A, Beer R, et al. Concurrent assessment of calpain and caspase-3 activation after oxygen–glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab. 2001;21(11):1281–94.

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez-Lopez D, Martinez-Orgado J, Casanova I, Bonet B, Leza JC, Lorenzo P, et al. Immature rat brain slices exposed to oxygen–glucose deprivation as an in vitro model of neonatal hypoxic-ischemic encephalopathy. J Neurosci Methods. 2005;145(1–2):205–12.

    Article  CAS  PubMed  Google Scholar 

  19. Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Trends Pharmacol Sci. 1999;20(5):191–6.

    Article  CAS  PubMed  Google Scholar 

  20. Adams JD, Lien EJ. Traditional Chinese medicine: scientific basis for its use. Royal Society of Chemistry; 2013.

    Google Scholar 

  21. Wang P-R, Wang J-S, Yang M-H, Kong L-Y. Neuroprotective effects of Huang-Lian-Jie-Du-Decoction on ischemic stroke rats revealed by 1H NMR metabolomics approach. J Pharm Biomed Anal. 2014;88:106–16.

    Article  CAS  PubMed  Google Scholar 

  22. Yun SP, Jung WS, Park SU, Moon SK, Ko CN, Cho KH, et al. Anti-hypertensive effect of chunghyul-dan (qingxue-dan) on stroke patients with essential hypertension. Am J Chin Med. 2005;33(03):357–64.

    Article  PubMed  Google Scholar 

  23. Xuejiang W, Magara T, Konishi T. Prevention and repair of cerebral ischemia-reperfusion injury by Chinese herbal medicine, shengmai san, in rats. Free Radical Res. 1999;31(5):449–55.

    Article  CAS  Google Scholar 

  24. Guo Q, Zhong M, Xu H, Mao X, Zhang Y, Lin N. A systems biology perspective on the molecular mechanisms underlying the therapeutic effects of Buyang Huanwu Decoction on ischemic stroke. Rejuvenation Res. 2015.

    Google Scholar 

  25. Kim H. Neuroprotective herbs for stroke therapy in traditional eastern medicine. Neurol Res. 2005;27(3):287–301.

    Article  PubMed  Google Scholar 

  26. Sucher NJ. Insights from molecular investigations of traditional Chinese herbal stroke medicines: implications for neuroprotective epilepsy therapy. Epilepsy Behav. 2006;8(2):350–62.

    Article  PubMed  Google Scholar 

  27. Gaire BP, Kim YO, Jin ZH, Park J, Choi H, Bu Y, et al. Neuroprotective effect of Scutellaria baicalensis flavones against global ischemic model in rats. J Nepal Pharm Assoc. 2015;27(1):1–8.

    Article  Google Scholar 

  28. Zhang Y, Wang X, Wang X, Xu Z, Liu Z, Ni Q, et al. Protective effect of flavonoids from Scutellaria baicalensis Georgi on cerebral ischemia injury. J Ethnopharmacol. 2006;108(3):355–60.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Tsai Y-H, Tseng S-H. The potential of tetrandrine as a protective agent for ischemic stroke. Molecules. 2011;16(9):8020–32.

    CAS  PubMed  Google Scholar 

  30. Sun X, Chan LN, Gong X, Sucher NJ. N-methyl-D-aspartate receptor antagonist activity in traditional Chinese stroke medicines. Neurosignals. 2003;12(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lao CJ, Lin JG, Kuo JS, Chiang SY, Chen SC, Liao ET, et al. Effect of Salvia Miltiorrhiza Bunge on cerebral infarct in ischemia-reperfusion injured rats. Am J Chin Med. 2003;31(2):191–200.

    Article  Google Scholar 

  32. Suk K, Kim SY, Leem K, Kim YO, Park SY, Hur J, et al. Neuroprotection by methanol extract of Uncaria rhynchophylla against global cerebral ischemia in rats. Life Sci. 2002;70(21):2467–80.

    Article  CAS  PubMed  Google Scholar 

  33. G-q Zheng, Cheng W, Wang Y, X-m Wang, S-z Zhao, Zhou Y, et al. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol. 2011;133(2):724–8.

    Article  CAS  Google Scholar 

  34. Cheon SY, Cho KJ, Lee JE, Kim HW, Lee SK, Kim HJ, et al. Cerebroprotective effects of red ginseng extract pretreatment against ischemia-induced oxidative stress and apoptosis. Int J Neurosci. 2013;123(4):269–77.

    Article  PubMed  Google Scholar 

  35. Zhang Z, Peng D, Zhu H, Wang X. Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats. Brain Res Bull. 2012;87(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  36. Xie Y, Zhang B, Zhang Y. Protective effects of Acanthopanax polysaccharides on cerebral ischemia–reperfusion injury and its mechanisms. Int J Biol Macromol. 2015;72:946–50.

    Article  CAS  PubMed  Google Scholar 

  37. Wu K-J, Hsieh M-T, Wu C-R, Wood WG, Chen Y-F. Green tea extract ameliorates learning and memory deficits in ischemic rats via its active component polyphenol epigallocatechin-3-gallate by modulation of oxidative stress and neuroinflammation. Evid Based Complement Altern Med. 2012;2012.

    Google Scholar 

  38. Tao Y-w, Wang Y, Lai B-l, Tian G-y, Feng J-p, Su J-x. Protective effect of polysaccharide from the root of Rhizoma Corydalis on focal ischemic cerebral infarct induced by middle cerebral artery occlusion in rats. J Med Plants Res. 2013;7(4):140–7.

    Google Scholar 

  39. Choi YB, Kim YI, Lee KS, Kim BS. Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res. 2004;1019(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshikawa T, Akiyoshi Y, Susumu T, Tokado H, Fukuzaki K, Nagata R, et al. Ginsenoside Rb1 reduces neurodegeneration in the peri-infarct area of a thromboembolic stroke model in non-human primates. J Pharmacol Sci. 2008;107(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience. 2012;202:342–51.

    Article  CAS  PubMed  Google Scholar 

  42. X-k Tu, W-z Yang, S-s Shi, C-h Wang, C-m Chen. Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia. Neurochem Res. 2009;34(9):1626–34.

    Article  CAS  Google Scholar 

  43. Gao L, Ji X, Song J, Liu P, Yan F, Gong W, et al. Puerarin protects against ischemic brain injury in a rat model of transient focal ischemia. Neurol Res. 2009;31(4):402–6.

    Article  PubMed  Google Scholar 

  44. Lee W-T, Lin M-H, Lee E-J, Hung Y-C, Tai S-H, Chen H-Y, et al. Magnolol reduces glutamate-induced neuronal excitotoxicity and protects against permanent focal cerebral ischemia up to 4 hours. PLoS ONE. 2012;7(7):e39952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao X, Liu J, Hu J, Li T, Zhang Y. Protective effect of protopine on the focal cerebral ischaemic injury in rats. Basic Clin Pharmacol Toxicol. 2007;101(2):85–9.

    Article  CAS  PubMed  Google Scholar 

  46. Wang ZF, Wang J, Zhang HY, Tang XC. Huperzine a exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J Neurochem. 2008;106(4):1594–603.

    Article  CAS  PubMed  Google Scholar 

  47. Lee TH, Jung CH, Lee D-H. Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague-Dawley rats. Food Chem Toxicol. 2012;50(12):4239–45.

    Article  CAS  PubMed  Google Scholar 

  48. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004;74(8):969–85.

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Wu X, Yu S, Fauzee NJS, Wu J, Li L, et al. Neuroprotective capabilities of Tanshinone IIA against cerebral ischemia/reperfusion injury via anti-apoptotic pathway in rats. Biol Pharm Bull. 2012;35(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  50. Ruan L, Huang H-S, Jin W-X, Chen H-M, Li X-J, Gong Q-J. Tetrandrine attenuated cerebral ischemia/reperfusion injury and induced differential proteomic changes in a MCAO mice model using 2-D DIGE. Neurochem Res. 2013;38(9):1871–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zeng X, Zhang Y, Zhang S, Zheng X. A microdialysis study of effects of gastrodin on neurochemical changes in the ischemic/reperfused rat cerebral hippocampus. Biol Pharm Bull. 2007;30(4):801–4.

    Article  CAS  PubMed  Google Scholar 

  52. Egashira N, Hayakawa K, Osajima M, Mishima K, Iwasaki K, Oishi R, et al. Involvement of GABAA receptors in the neuroprotective effect of theanine on focal cerebral ischemia in mice. J Pharmacol Sci. 2007;105(2):211–4.

    Article  CAS  PubMed  Google Scholar 

  53. Kao T-K, Ou Y-C, J-s Kuo, Chen W-Y, Liao S-L, Wu C-W, et al. Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats. Neurochem Int. 2006;48(3):166–76.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang P, Liu X, Zhu Y, Chen S, Zhou D, Wang Y. Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-κB activation and cytokine production of glial cells. Neurosci Lett. 2013;534:123–7.

    Article  CAS  PubMed  Google Scholar 

  55. Selkoe DJ. Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nature cell Biol. 2004;6(11):1054–61.

    Article  CAS  PubMed  Google Scholar 

  56. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34(7):939–44.

    Article  CAS  PubMed  Google Scholar 

  57. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55(2):164–73.

    Article  CAS  PubMed  Google Scholar 

  58. Roth AD, Ramirez G, Alarcon R, Von Bernhardi R. Oligodendrocytes damage in Alzheimer’s disease: beta amyloid toxicity and inflammation. Biol Res. 2005;38(4):381–7.

    Article  CAS  PubMed  Google Scholar 

  59. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular A beta and synaptic dysfunction. Neuron. 2003;39(3):409–21.

    Article  CAS  PubMed  Google Scholar 

  60. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3(4):519–26.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng TW, Chen TF, Yip PK, Hua MS, Yang CC, Chiu MJ. Comparison of behavioral and psychological symptoms of Alzheimer’s disease among institution residents and memory clinic outpatients. Int Psychogeriatr. 2009;21(6):1134–41.

    Article  PubMed  Google Scholar 

  62. Dolan D, Troncoso J, Resnick SM, Crain BJ, Zonderman AB, O’Brien RJ. Age, Alzheimer’s disease and dementia in the Baltimore longitudinal study of ageing. Brain J Neurol. 2010;133:2225–31.

    Article  Google Scholar 

  63. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68(5):326–37.

    Article  CAS  PubMed  Google Scholar 

  64. Alzheimer’s A. Association Report. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11(3):332–84.

    Google Scholar 

  65. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995;373(6514):523–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274(5284):99–102.

    Article  CAS  PubMed  Google Scholar 

  67. Gotz J, Probst A, Spillantini MG, Schafer T, Jakes R, Burki K, et al. Somatodendritic localization and hyperphosphorylation of tau-protein in transgenic mice expressing the longest human brain tau-isoform. EMBO J. 1995;14(7):1304–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chetelat G, Fouquet M. Neuroimaging biomarkers for Alzheimer’s disease in asymptomatic APOE4 carriers. Rev Neurol France. 2013;169(10):729–36.

    Article  CAS  Google Scholar 

  69. Raber J, Huang YD, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging. 2004;25(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  70. Wang J, Tanila H, Puolivali J, Kadish I, van Groen T. Gender differences in the amount and deposition of amyloid beta in APPswe and PS1 double transgenic mice (vol. 14, p. 318, 2003). Neurobiol Dis. 2004;16(1):290.

    Google Scholar 

  71. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293(5534):1487–91.

    Article  CAS  PubMed  Google Scholar 

  72. Heraud C, Goufak D, Ando K, Leroy K, Suain V, Yilmaz Z, et al. Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis. 2014;62:100–12.

    Article  CAS  PubMed  Google Scholar 

  73. WoodruffPak DS, Trojanowski JQ. The older rabbit as an animal model: implications for Alzheimer’s disease. Neurobiol Aging. 1996;17(2):283–90.

    Article  CAS  Google Scholar 

  74. Takeda T. Senescence-Accelerated Mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 Mice. Neurochem Res. 2009;34(4):639–59.

    Article  CAS  PubMed  Google Scholar 

  75. Harkany T, O’Mahony S, Kelly JP, Soos K, Toro I, Penke B, et al. beta-Amyloid(Phe(SO3H)(24))25–35 in rat nucleus basalis induces behavioural dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav Brain Res. 1998;90(2):133–45.

    Article  CAS  PubMed  Google Scholar 

  76. Song XY, Hu JF, Chu SF, Zhang Z, Xu S, Yuan YH, et al. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3beta/tau signaling pathway and the Abeta formation prevention in rats. Eur J Pharmacol. 2013;710(1–3):29–38.

    Article  CAS  PubMed  Google Scholar 

  77. Raghavendra M, Maiti R, Kumar S, Acharya S. Role of aqueous extract of Azadirachta indica leaves in an experimental model of Alzheimer’s disease in rats. Int J Appl Basic Med Res. 2013;3(1):37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lu MC. Danggui shaoyao san improve colchichine-induced learning acquisition impairment in rats. Acta Pharmacol Sin. 2001;22(12):1149–53.

    CAS  PubMed  Google Scholar 

  79. Zhang Z, Yu CX. Effect of melatonin on learning and memory impairment induced by aluminum chloride and its mechanism. Yao xue xue bao (Acta Pharmaceutica Sinica). 2002;37(9):682–6.

    Google Scholar 

  80. Estape N, Steckler T. Cholinergic blockade impairs performance in operant DNMTP in two inbred strains of mice. Pharmacol Biochem Behav. 2002;72(1–2):319–34.

    Article  CAS  PubMed  Google Scholar 

  81. Luques L, Shoham S, Weinstock M. Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: prevention by ladostigil. Exp Neurol. 2007;206(2):209–19.

    Article  CAS  PubMed  Google Scholar 

  82. Wang BS, Wang H, Wei ZH, Song YY, Zhang L, Chen HZ. Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: an updated meta-analysis. J Neural Transm. 2009;116(4):457–65.

    Article  CAS  PubMed  Google Scholar 

  83. Ouyang S, Sun LS, Guo SL, Liu X, Xu JP. Effects of timosaponins on learning and memory abilities of rats with dementia induced by lateral cerebral ventricular injection of amyloid beta- peptide. Di 1 jun yi da xue xue bao (Academic Journal of the first medical college of PLA). 2005;25(2):121–6.

    Google Scholar 

  84. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, et al. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem. 2001;276(1):251–60.

    Article  CAS  PubMed  Google Scholar 

  85. Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr. 2010;10.

    Google Scholar 

  86. Lu G, Wu Y, Mak YT, Wai SM, Feng ZT, Rudd JA, et al. Molecular evidence of the neuroprotective effect of Ginkgo biloba (EGb761) using bax/bcl-2 ratio after brain ischemia in senescence-accelerated mice, strain prone-8. Brain Res. 2006;1090:23–8.

    Article  CAS  PubMed  Google Scholar 

  87. Calapai G, Crupi A, Firenzuoli F, Marciano MC, Squadrito F, Inferrera G, et al. Neuroprotective effects of Ginkgo biloba extract in brain ischemia are mediated by inhibition of nitric oxide synthesis. Life Sci. 2000;67(22):2673–83.

    Article  CAS  PubMed  Google Scholar 

  88. Gauthier S, Schlaefke S. Efficacy and tolerability of Ginkgo biloba extract EGb 761 (R) in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging. 2014;9:2065–77.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wu JG, Wang YY, Zhang ZL, Yu B. Herbal medicine in the treatment of Alzheimer’s disease. Chin J Integr Med. 2015;21(2):102–7.

    Article  PubMed  Google Scholar 

  90. Jia H, Jiang Y, Ruan Y, Zhang Y, Ma X, Zhang J, et al. Tenuigenin treatment decreases secretion of the Alzheimer’s disease amyloid beta-protein in cultured cells. Neurosci Lett. 2004;367(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  91. Asai M, Iwata N, Yoshikawa A, Aizaki Y, Ishiura S, Saido TC, et al. Berberine alters the processing of Alzheimer’s amyloid precursor protein to decrease A beta secretion. Biochem Biophys Res Commun. 2007;352(2):498–502.

    Article  CAS  PubMed  Google Scholar 

  92. Wirths O, Multhaup G, Bayer TA. A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide—the first step of a fatal cascade. J Neurochem. 2004;91(3):513–20.

    Article  CAS  PubMed  Google Scholar 

  93. Li Z, Li H, Zhao CH, Lv C, Zhong CJ, Xin WF, et al. Protective effect of Notoginsenoside R1 on an APP/PS1 mouse model of Alzheimer’s disease by up-regulating insulin degrading enzyme and inhibiting A beta accumulation. Cns Neurol Disord. 2015;14(3):360–9.

    Article  CAS  Google Scholar 

  94. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    Article  CAS  PubMed  Google Scholar 

  95. Chua CE, Tang BL. alpha-synuclein and Parkinson’s disease: the first roadblock. J Cell Mol Med. 2006;10(4):837–46.

    Article  CAS  PubMed  Google Scholar 

  96. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:91.

    PubMed  PubMed Central  Google Scholar 

  97. Hirsch EC, Hunot S, Damier P, Faucheux B. Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol. 1998;44(3 Suppl 1):S115–20.

    Article  CAS  PubMed  Google Scholar 

  98. Nixon RA. The role of autophagy in neurodegenerative disease. Nature Med. 2013;19(8):983–97.

    Article  CAS  PubMed  Google Scholar 

  99. Martin GE, Myers RD, Newberg DC. Catecholamine release by intracerebral perfusion of 6-hydroxydopamine and desipramine. Eur J Pharmacol. 1976;36(2):299–311.

    Article  CAS  PubMed  Google Scholar 

  100. Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord. 2008;14(Suppl 2):S124–9.

    Article  PubMed  Google Scholar 

  101. Hacioglu G, Seval-Celik Y, Tanriover G, Ozsoy O, Saka-Topcuoglu E, Balkan S, et al. Docosahexaenoic acid provides protective mechanism in bilaterally MPTP-lesioned rat model of Parkinson’s disease. Folia Histochem Cyto. 2012;50(2):228–38.

    Article  CAS  Google Scholar 

  102. Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol Pharm Bull. 2011;34(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  103. Koller WC. Paraquat and Parkinson’s disease. Neurology. 1986;36(8):1147.

    Article  CAS  PubMed  Google Scholar 

  104. Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, et al. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol. 2002;175(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  105. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287(5456):1265–9.

    Article  CAS  PubMed  Google Scholar 

  106. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res. 2002;68(5):568–78.

    Article  CAS  PubMed  Google Scholar 

  107. Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S, et al. Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging. 2003;24(2):245–58.

    Article  CAS  PubMed  Google Scholar 

  108. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44(4):601–7.

    Article  CAS  PubMed  Google Scholar 

  109. Li XT, Patel JC, Wang J, Avshalumov MV, Nicholson C, Buxbaum JD, et al. Enhanced Striatal Dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J Neurosci. 2010;30(5):1788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kumar A, Cookson MR. Role of LRRK2 kinase dysfunction in Parkinson disease. Expert Rev Mol Med. 2011;13.

    Google Scholar 

  111. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66(5):646–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kum WF, Durairajan SSK, Bian ZX, Man SC, Lam YC, Xie LX, et al. Treatment of Idiopathic Parkinson’s disease with traditional chinese herbal medicine: a randomized placebo-controlled pilot clinical study. Evid Based Compl Alt. 2011:1–8.

    Google Scholar 

  113. Kim HG, Ju MS, Kim DH, Hong J, Cho SH, Cho KH, et al. Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson’s disease. Basic Clin Pharmacol Toxicol. 2010;107(6):958–64.

    Article  CAS  PubMed  Google Scholar 

  114. Gao K, Liu MY, Cao JY, Yao MN, Lu YY, Li JK, et al. Protective effects of Lycium barbarum Polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules. 2015;20(1):293–308.

    Article  CAS  Google Scholar 

  115. Li L, Yang N, Nin L, Zhao Z, Chen L, Yu J, et al. Chinese herbal medicine formula Tao Hong Si Wu Decoction protects against cerebral ischemia-reperfusion injury via PI3K/Akt and the Nrf2 signaling pathway. J Nat Med. 2015;69(1):76–85.

    Article  PubMed  Google Scholar 

  116. Ko C-N, Park I-S, Park S-U, Jung W-S, Moon S-K, Park J-M, et al. Neuroprotective effect of Chunghyuldan (Qing Xue Dan) on hypoxia-reoxygenation induced damage of neuroblastoma 2a cell lines. Chin J Integr Med. 2013;19(12):940–4.

    Article  CAS  PubMed  Google Scholar 

  117. Li X-M, Bai X-C, Qin L-N, Huang H, Xiao Z-J, Gao T-M. Neuroprotective effects of Buyang Huanwu Decoction on neuronal injury in hippocampus after transient forebrain ischemia in rats. Neurosci Lett. 2003;346(1):29–32.

    Article  CAS  PubMed  Google Scholar 

  118. Lin Z, Zhu D, Yan Y, Yu B. Herbal formula FBD extracts prevented brain injury and inflammation induced by cerebral ischemia–reperfusion. J Ethnopharmacol. 2008;118(1):140–7.

    Article  PubMed  Google Scholar 

  119. Wei X, Liu H, Sun X, Fu F, Zhang X, Wang J, et al. Hydroxysafflor yellow A protects rat brains against ischemia-reperfusion injury by antioxidant action. Neurosci Lett. 2005;386(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang GR, Cheng XR, Zhou WX, Zhang YX. Age-related expression of calcium/calmodulin-dependent protein kinase Ii a in the Hippocampus and cerebral cortex of senescence accelerated mouse prone/8 mice is modulated by anti-Alzheimer’s disease drugs. Neuroscience. 2009;159(1):308–15.

    Article  CAS  PubMed  Google Scholar 

  121. Yang Y, Cheng XR, Zhang GR, Zhou WX, Zhang YX. Autocrine motility factor receptor is involved in the process of learning and memory in the central nervous system. Behav Brain Res. 2012;229(2):412–8.

    Article  CAS  PubMed  Google Scholar 

  122. Durairajan SS, Huang YY, Yuen PY, Chen LL, Kwok KY, Liu LF, et al. Effects of Huanglian-Jie-Du-Tang and its modified formula on the modulation of amyloid-beta precursor protein processing in Alzheimer’s disease models. PLoS ONE. 2014;9(3):e92954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kim HG, Kim JY, Whang WW, Oh MS. Neuroprotective effect of Chunghyuldan from amyloid beta oligomer induced neuroinflammation in vitro and in vivo. Can J Physiol Pharm. 2014;92(6):429–37.

    Article  CAS  Google Scholar 

  124. Wang L, Nishida H, Ogawa Y, Konishi T. Prevention of oxidative injury in PC12 cells by a traditional Chinese medicine, Shengmai San, as a model of an antioxidant-based composite formula. Biol Pharm Bull. 2003;26(7):1000–4.

    Article  CAS  PubMed  Google Scholar 

  125. Lin ZH, Xiao ZB, Zhu DN, Yan YQ, Yu BY, Wang QJ. Aqueous extracts of FBD, a Chinese herb formula composed of Poria cocos, Atractylodes macrocephala, and Angelica sinensis reverse scopolamine induced memory deficit in ICR mice. Pharm Biol. 2009;47(5):396–401.

    Article  Google Scholar 

  126. Liu X, Hao WL, Qin YR, Decker Y, Wang X, Burkart M, et al. Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun. 2015;46:121–31.

    Article  CAS  PubMed  Google Scholar 

  127. Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, et al. The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001;70(5):603–14.

    Article  CAS  PubMed  Google Scholar 

  128. Guo J, Chang L, Zhang X, Pei S, Yu M, Gao J. Ginsenoside compound K promotes beta-amyloid peptide clearance in primary astrocytes via autophagy enhancement. Exp Ther Med. 2014;8(4):1271–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Xiao XQ, Wang R, Han YF, Tang XC. Protective effects of huperzine A on beta-amyloid(25–35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett. 2000;286(3):155–8.

    Article  CAS  PubMed  Google Scholar 

  130. Wang LM, Han YF, Tang XC. Huperzine A improves cognitive deficits caused by chronic cerebral hypoperfusion in rats. Eur J Pharmcol. 2000;398(1):65–72.

    Article  CAS  Google Scholar 

  131. Yang L, Ye CY, Huang XT, Tang XC, Zhang HY. Decreased accumulation of subcellular amyloid-beta with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J Alzheimer’s Dis (JAD). 2012;31(1):131–42.

    CAS  PubMed  Google Scholar 

  132. Zhang YH, Zhao XY, Chen XQ, Wang Y, Yang HH, Hu GY. Spermidine antagonizes the inhibitory effect of huperzine A on [3H]dizocilpine (MK-801) binding in synaptic membrane of rat cerebral cortex. Neurosci Lett. 2002;319(2):107–10.

    Article  CAS  PubMed  Google Scholar 

  133. Tang LL, Wang R, Tang XC. Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells. Acta Pharmacol Sin. 2005;26(6):673–8.

    Article  CAS  PubMed  Google Scholar 

  134. Yuan SM, Gao K, Wang DM, Quan XZ, Liu JN, Ma CM, et al. Evodiamine improves congnitive abilities in SAMP8 and APP(swe)/PS1(Delta E9) transgenic mouse models of Alzheimer’s disease. Acta Pharmacol Sin. 2011;32(3):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fan LH, Wang KZ, Cheng B, Wang CS, Dang XQ. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci. 2006;7:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cheng XR, Zhang L, Hu JJ, Sun L, Du GH. Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells. Cell Biol Int. 2007;31(5):438–43.

    Article  CAS  PubMed  Google Scholar 

  137. Durairajan SS, Liu LF, Lu JH, Chen LL, Yuan Q, Chung SK, et al. Berberine ameliorates beta-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging. 2012;33(12):2903–19.

    Article  CAS  PubMed  Google Scholar 

  138. Xian YF, Lin ZX, Mao QQ, Hu Z, Zhao M, Che CT, et al. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against Beta-Amyloid-induced neurotoxicity. Evid Based Complement Altern Med (eCAM). 2012;2012:802625.

    Google Scholar 

  139. Fujiwara H, Iwasaki K, Furukawa K, Seki T, He M, Maruyama M, et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s beta-amyloid proteins. J Neurosci Res. 2006;84(2):427–33.

    Article  CAS  PubMed  Google Scholar 

  140. Chen ZA, Wang JL, Liu RT, Ren JP, Wen LQ, Chen XJ, et al. Liquiritin potentiate neurite outgrowth induced by nerve growth factor in PC12 cells. Cytotechnology. 2009;60(1–3):125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ding HT, Wang HT, Zhao YX, Sun DK, Zhai X. Protective effects of Baicalin on A beta(1–42)-induced learning and memory deficit, oxidative stress, and apoptosis in rat. Cell Mol Neurobiol. 2015;35(5):623–32.

    Article  CAS  PubMed  Google Scholar 

  142. Yin F, Liu JH, Ji XH, Wang YW, Zidichouski J, Zhang JZ. Baicalin prevents the production of hydrogen peroxide and oxidative stress induced by A beta aggregation in SH-SY5Y cells. Neurosci Lett. 2011;492(2):76–9.

    Article  CAS  PubMed  Google Scholar 

  143. Xiong JX, Wang CZ, Chen HY, Hu YZ, Tian L, Pan JK, et al. A beta-induced microglial cell activation is inhibited by baicalin through the JAK2/STAT3 signaling pathway. Int J Neurosci. 2014;124(8):609–19.

    Article  CAS  PubMed  Google Scholar 

  144. Zeng KW, Ko H, Yang HO, Wang XM. Icariin attenuates beta-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology. 2010;59(6):542–50.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang H, Liu B, Wu J, Xu C, Tao J, Duan X, et al. Icariin inhibits corticosterone-induced apoptosis in hypothalamic neurons via the PI3K/Akt signaling pathway. Mol Med Rep. 2012;6(5):967–72.

    CAS  PubMed  Google Scholar 

  146. Xing G, Dong M, Li X, Zou Y, Fan L, Wang X, et al. Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway. Brain Res Bull. 2011;85(3–4):212–8.

    Article  CAS  PubMed  Google Scholar 

  147. Wang HM, Wang LW, Liu XM, Li CL, Xu SP, Farooq AD. Neuroprotective effects of forsythiaside on learning and memory deficits in senescence-accelerated mouse prone (SAMP8) mice. Pharmacol Biochem Behav. 2013;105:134–41.

    Article  CAS  PubMed  Google Scholar 

  148. Dong X, Zhang D, Zhang L, Li W, Meng X. Osthole improves synaptic plasticity in the hippocampus and cognitive function of Alzheimer’s disease rats via regulating glutamate. Neural Regeneration Res. 2012;7(30):2325–32.

    CAS  Google Scholar 

  149. Hu Y, Wen Q, Liang W, Kang T, Ren L, Zhang N, et al. Osthole reverses beta-amyloid peptide cytotoxicity on neural cells by enhancing cyclic AMP response element-binding protein phosphorylation. Biolo Pharm Bull. 2013;36(12):1950–8.

    Article  CAS  Google Scholar 

  150. Tsai FS, Wu LY, Yang SE, Cheng HY, Tsai CC, Wu CR, et al. Ferulic acid reverses the cognitive dysfunction caused by amyloid beta peptide 1–40 through anti-oxidant activity and cholinergic activation in rats. Am J Chin Med. 2015;43(2):319–35.

    Article  CAS  PubMed  Google Scholar 

  151. Mao X, Liao Z, Guo L, Xu X, Wu B, Xu M, et al. Schisandrin C ameliorates learning and memory deficits by A beta -induced oxidative stress and neurotoxicity in mice. Phytotherapy Res PTR. 2015.

    Google Scholar 

  152. Huang JF, Shang L, Liu P, Zhang MQ, Chen S, Chen D, et al. Timosaponin-BII inhibits the up-regulation of BACE1 induced by Ferric Chloride in rat retina. BMC Complem Altern M. 2012;12.

    Google Scholar 

  153. Lv J, Jia H, Jiang Y, Ruan Y, Liu Z, Yue W, et al. Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-beta secretion in vitro. Acta Physiol. 2009;196(4):419–25.

    Article  CAS  Google Scholar 

  154. Hu YK, Li CY, Shen W. Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease. Neuropathology. 2014;34(4):370–7.

    CAS  PubMed  Google Scholar 

  155. Lv C, Wang L, Liu XL, Yan SJ, Yan SS, Wang YY, et al. Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology. 2015;89:175–84.

    Article  CAS  PubMed  Google Scholar 

  156. Wang Q, Xiao B, Cui SQ, Song HL, Qian YJ, Dong L, et al. Triptolide treatment reduces Alzheimer’s disease (AD)-like pathology through inhibition of BACE1 in a transgenic mouse model of AD. Dis Model Mech. 2014;7(12):1385–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Wang C, Zhang X, Teng Z, Zhang T, Li Y. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol. 2014;740:312–20.

    Article  CAS  PubMed  Google Scholar 

  158. Ju MS, Kim HG, Choi JG, Ryu JH, Hur J, Kim YJ, et al. Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson’s disease models. Food Chem Toxicol. 2010;48(8–9):2037–44.

    Article  CAS  PubMed  Google Scholar 

  159. Rojas P, Serrano-Garcia N, Mares-Samano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Eur J Neurosci. 2008;28(1):41–50.

    Article  PubMed  Google Scholar 

  160. Kim EH, Jang MH, Shin MC, Shin MS, Kim CJ. Protective effect of aqueous extract of Ginseng radix against 1-methyl-4-phenylpyridinium-induced apoptosis in PC12 cells. Biol Pharm Bull. 2003;26(12):1668–73.

    Article  CAS  PubMed  Google Scholar 

  161. Lu JH, Tan JQ, Durairajan SSK, Liu LF, Zhang ZH, Ma L, et al. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy (vol. 8, p. 98, 2012). Autophagy. 2012;8(5):864–6.

    Google Scholar 

  162. Chen LL, Song JX, Lu JH, Yuan ZW, Liu LF, Durairajan SSK, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of Alpha-Synuclein via Akt/mTOR pathway. J Neuroimmune Pharm. 2014;9(3):380–7.

    Article  Google Scholar 

  163. Zhang X, Xiong J, Liu S, Wang L, Huang J, Liu L, et al. Puerarin protects dopaminergic neurons in Parkinson’s disease models. Neuroscience. 2014;280:88–98.

    Article  CAS  PubMed  Google Scholar 

  164. Sheng GQ, Pu XP, Lei L, Tu PF, Li CL. Tubuloside B from Cistanche salsa rescues the PC12 neuronal cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis and oxidative stress. Planta Med. 2002;68(11):966–70.

    Article  CAS  PubMed  Google Scholar 

  165. Geng XC, Song LW, Pu XP, Tu PF. Neuroprotective effects of phenylethanoid glycosides from Cistanches salsa against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced dopaminergic toxicity in C57 mice. Biol Pharm Bull. 2004;27(6):797–801.

    Article  CAS  PubMed  Google Scholar 

  166. Hwang YP, Jeong HG. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3 K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol. 2010;242(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  167. Radad K, Gille G, Moldzio R, Saito H, Ishige K, Rausch WD. Ginsenosides Rb1 and Rg1 effects on survival and neurite growth of MPP+ -affected mesencephalic dopaminergic cells. J Neural Transm. 2004;111(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  168. Xu BB, Liu CQ, Gao X, Zhang WQ, Wang SW, Cao YL. Possible mechanisms of the protection of ginsenoside Re against MPTP-induced apoptosis in substantia nigra neurons of Parkinson’s disease mouse model. J Asian Nat Prod Res. 2005;7(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  169. Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB, et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell B. 2008;40(3):409–22.

    Article  CAS  Google Scholar 

  170. Wang SX, Jing HR, Yang HY, Liu ZD, Guo H, Chai LJ, et al. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. J Ethnopharm. 2015;164:247–55.

    Article  CAS  Google Scholar 

  171. Xue X, Liu H, Qi L, Li X, Guo C, Gong D, et al. Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson’s disease. Brain Res Bull. 2014;103:54–9.

    Article  CAS  PubMed  Google Scholar 

  172. Lee E, Park HR, Ji ST, Lee Y, Lee J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-kappaB, ERK, and JNK. J Neurosci Res. 2014;92(1):130–9.

    Article  CAS  PubMed  Google Scholar 

  173. Lu JH, Ardah MT, Durairajan SSK, Liu LF, Xie LX, Fong WFD, et al. Baicalein inhibits formation of alpha-Synuclein Oligomers within living cells and prevents A beta peptide fibrillation and oligomerisation. ChemBioChem. 2011;12(4):615–24.

    Article  CAS  PubMed  Google Scholar 

  174. Xiong P, Chen X, Guo C, Zhang N, Ma B. Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson’s disease rats. Neural Regeneration Res. 2012;7(27):2092–8.

    CAS  Google Scholar 

  175. Guo CY, Chen X, Xiong P. Baicalin suppresses iron accumulation after substantia nigra injury: relationship between iron concentration and transferrin expression. Neural Regeneration Res. 2014;9(6):630–6.

    Article  CAS  Google Scholar 

  176. Li LY, Zhao XL, Fei XF, Gu ZL, Qin ZH, Liang ZQ. Bilobalide inhibits 6-OHDA-induced activation of NF-kappaB and loss of dopaminergic neurons in rat substantia nigra. Acta Pharmacol Sin. 2008;29(5):539–47.

    Article  PubMed  CAS  Google Scholar 

  177. Kim M, Cho KH, Shin MS, Lee JM, Cho HS, Kim CJ, et al. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int J Mol Med. 2014;33(4):870–8.

    CAS  PubMed  Google Scholar 

  178. Zhao H, Xu ML, Zhang Q, Guo ZH, Peng Y, Qu ZY, et al. Tetramethylpyrazine alleviated cytokine synthesis and dopamine deficit and improved motor dysfunction in the mice model of Parkinson’s disease. Neurol Sci. 2014;35(12):1963–7.

    Article  PubMed  Google Scholar 

  179. Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J Mol Neurosci. 2015;55(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  180. Ahsan N, Mishra S, Jain MK, Surolia A, Gupta S. Curcumin Pyrazole and its derivative (N-(3-nitrophenylpyrazole) curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of wild type and mutant alpha-Synuclein. Sci Rep. 2015;5:9862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ji HF, Shen L. The multiple pharmaceutical potential of curcumin in Parkinson’s disease. Cns Neurol Disord. 2014;13(2):369–73.

    Article  CAS  Google Scholar 

  182. Zhang LB, Liu XH, Jiang Y, Guo P, Sha LJ, Li Y. Effect of notoginsenoside-Rg(1) on the expression of several proteins in the striatum of rat models with Parkinson’s disease. Chem Res Chin U. 2006;22(2):139–44.

    Article  Google Scholar 

  183. Lofrumento DD, Nicolardi G, Cianciulli A, De Nuccio F, La Pesa V, Carofiglio V, et al. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun London. 2014;20(3):249–60.

    Article  CAS  Google Scholar 

  184. Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, et al. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Bba-Mol Basis Dis. 2014;1842(7):902–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Macao Science and Technology Development Fund (FDCT_No.022/2015/A1) and China National Science Foundation (NSFC_No.31500831) awarded to Jia-hong Lu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Hong Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lu, JH., Li, M., Wu, MY., Cai, CZ. (2016). Chinese Medicines in Neurological Diseases: Pharmacological Perspective. In: Leung, Sw., Hu, H. (eds) Evidence-based Research Methods for Chinese Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2290-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2290-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2289-0

  • Online ISBN: 978-981-10-2290-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics