Skip to main content

Hemoglobin–Albumin Clusters as a Red Blood Cell Substitute

  • Chapter
  • First Online:
Albumin in Medicine
  • 1555 Accesses

Abstract

Core–shell protein cluster comprising bovine hemoglobin (HbBv) in the core and human serum albumin (HSA) at the shell was created as an artificial O2 carrier designed for use as a red blood cell (RBC) substitute. The protein cluster was prepared by covalent linkage between the Cys-34 residue of HSA and the surface Lys amino groups of HbBv using heterobifunctional cross-linker. The average HSA/HbBv ratio of one cluster was determined as 3.0 ± 0.2; therefore we indicated this hemoglobin–albumin cluster as HbBv–HSA 3 . Human Hb A (HbA) can be also used for a core protein to synthesize HbA–HSA 3 cluster. The isoelectric point of HbBv–HSA 3 (pI = 5.1) was markedly lower than that of HbBv and almost identical to the value of HSA. SFM and TEM measurements revealed a triangular shape of HbBv–HSA3. The complete 3D structure based on TEM data was reconstructed. The clusters showed moderately higher O2 affinities than the native HbBv and HbA. Viscosity and blood cell counting measurements demonstrated that HbBv–HSA 3 has good compatibility with whole blood. Intravenous administration of HbBv–HSA 3 into anesthetized rats elicited no unfavorable increase in systemic blood pressure by vasoconstriction. The half-life of 125I-labeled cluster in circulating blood is longer than that of HSA. All results indicate that HbBv–HSA 3 has sufficient preclinical safety as an alternative material for RBC transfusion. Interestingly, clusters prepared under N2 atmosphere showed low O2 affinity resembling human RBC. Furthermore, the exterior HSA units possess a remarkable ability to bind antioxidant agent, such as Pt nanoparticle (PtNP). The peripheral HSA–PtNP shell prevents oxidation of the core HbBv, which enables the formation of an extremely stable O2 complex even in H2O2 solution. This chapter reviews the synthesis, structure, O2-binding property, and preclinical safety of hemoglobin–albumin cluster as a promising RBC substitute for practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagic A, Koprianiuk A, Kluger R (2005) J Am Chem Soc 127:8036–8043

    Article  CAS  PubMed  Google Scholar 

  • Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. In: Neuberger A, Tatum EL (eds) North-Holland research monographs, vol 21, Frontiers of Biology. North-Holland, Amsterdam, pp 13–39

    Google Scholar 

  • Buehler PW, Boyskins RA, Jia Y, Norris S, Freedberg DI, Alayash AI (2005) Structural and functional characterization of glutaraldehyde-polymerized bovine hemoglobin and its isolated fractions. Anal Chem 77:3466–3478

    Article  CAS  PubMed  Google Scholar 

  • Buehler PW, Boykins RA, Norris S, Alayash AL (2006) Anal Chem 78:4634–4641

    Article  CAS  PubMed  Google Scholar 

  • Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5:827–835

    Article  CAS  PubMed  Google Scholar 

  • D’Agnilloo F, Chang TMS (1998) Nat Biotechnol 16:667–671

    Article  Google Scholar 

  • Daijima Y, Komatsu T (2014) Haemoglobin wrapped covalently by human serum albumin mutants containing Mn(III) protoporphyrin IX: an O2 complex stable in H2O2 solution. Chem Commun 50:14716–14719

    Article  CAS  Google Scholar 

  • Doherty DH, Doyle MP, Curry SR, Vali RJ, Fattor TJ, Olson JS, Lemon DD (1998) Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 16:672–676

    Article  CAS  PubMed  Google Scholar 

  • Elmer J, Zorc K, Rameez S, Zhou Y, Cabrales P, Palmer AF (2012) Hypervolemic infusion of Lumbricus terrestris erythrocruorin purified by tangential-flow filtration. Transfusion 52:1729–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S (2008) Kinetic analysis of superoxide radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24:7354–7364

    Article  CAS  PubMed  Google Scholar 

  • Haraldsson B, Nyström J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88:451–487

    Article  CAS  PubMed  Google Scholar 

  • Haruki R, Kimura T, Iwsaki H, Yamada K, Kamiyama I, Kohno M, Taguchi K, Nagao S, Maruyama T, Otagiri M, Komatsu T (2015) Safety evaluation of hemoglobin-albumin cluster “HemoAct” as a red blood cell substitute. Sci Rep 5:12778, 1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka H, Haruki R, Yamada K, Böttcher C, Komatsu T (2014) Hemoglobin–albumin cluster incorporating a Pt nanoparticle: artificial O2 carrier with antioxidant activities. PLoS ONE 9:e110541, 1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu D, Kluger R (2008) Functional cross-linked hemoglobin bis-tetramers: geometry and cooperativity. Biochemistry 47:12551–12561

    Article  CAS  PubMed  Google Scholar 

  • Intaglietta M (2004) Microvascular transport factors in the design of effective blood substitutes. In: Messmer K, Burhop KE, Hutter J (eds) Microcirculatory effects of hemoglobin solutions. Karger AG, Basel, pp 8–15

    Chapter  Google Scholar 

  • Jahr JS, Sadighi A, Doherty L, Li A, Kim HW (2011) Hemoglobin-based oxygen carriers: history, limits, brief summary of the state of the art, including clinical trials. In: Bettati S, Mozzarelli A (eds) Chemistry and biochemistry of oxygen therapeutics: from transfusion to artificial blood. Wiley, West Sussex, pp 301–316

    Chapter  Google Scholar 

  • Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41:615–626

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Shinohara R, Böttcher C, Komatsu T (2015) Core-shell clusters of human haemoglobin A and human serum albumin: artificial O2-carriers having various O2-affinities. J Mater Chem B 3:6157–6164

    Article  CAS  Google Scholar 

  • Kluger R (2010) Red cell substitutes from hemoglobin – do we start all over again? Curr Opin Chem Biol 14:538–543

    Article  CAS  PubMed  Google Scholar 

  • Kluger R, Lui FE (2013) HBOCs from chemical modification of Hb. In: Kim HW, Greenburg AG (eds) Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Springer, Berlin, pp 159–183

    Chapter  Google Scholar 

  • Kluger R, Zhang J (2003) Hemoglobin dendrimers: functional protein clusters. J Am Chem Soc 125:6070–6071

    Article  CAS  PubMed  Google Scholar 

  • Li D, Hu T, Manjula BN, Acharya SA (2008) Non-conservative surface decoration of hemoglobin: influence of neutralization of positive charges at PEGylation sites on molecular and functional properties of PEGylated hemoglobin. Biochim Biophys Acta 1784:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Li D, Hu T, Manjula BN, Acharya SA (2009) Extension arms facilitated pegylation of αα-hemoglobin with modifications targeted exclusively to amino groups: functional and structural advantages of free Cys-93(β) in the PEG-Hb adduct. Bioconjug Chem 20:2062–2070

    Article  CAS  PubMed  Google Scholar 

  • Manjula BN, Tsai A, Upadhya R, Perumalsamy K, Smith K, Malavalli A, Vandegriff K, Winslow RM, Intaglietta M, Prabhakaran M, Friedman JM, Acharya AS (2003) Site-specific PEGylation of hemoglobin at Cys-93(β): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain. Bioconjug Chem 14:464–472

    Article  CAS  PubMed  Google Scholar 

  • Ministry of Health, Labor and Welfare, Japan (2014) Proceedings of blood donation promotion committee, pharmaceutical affairs and food sanitation council on 2 December, 2014. http://www.mhlw.go.jp/file/05-Shingikai-11121000-Iyakushokuhinkyoku-Soumuka/0000067177.pdf. Accessed 30 Dec 2015

  • Mondery-Pawlowski CL, Tian LL, Pan V, Gupta AS (2013) Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromolecules 14:939–948

    Article  Google Scholar 

  • Mueser TC, Rogers PH, Arnone A (2000) Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry 39:15353–15364

    Article  CAS  PubMed  Google Scholar 

  • Nagababu E, Ramasamy S, Rifkind JM, Jia Y, Alayash AI (2002) Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation. Biochemistry 41:7407–7415

    Article  CAS  PubMed  Google Scholar 

  • Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM (2008) Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death. J Am Med Assoc 299:2304–2312

    Article  CAS  Google Scholar 

  • Pearce LB, Gawryl MS, Rentko VT, Moon-Massat PF, Rausch CW (2006) HBOC-201 (hemoglobin glutamer-250) (bovine), hemopure®): clinical studies. In: Winslow RM (ed) Blood substitutes. Elsevier, San Diego, pp 437–450

    Chapter  Google Scholar 

  • Rohlfs RJ, Bruner E, Chiu A, Gonzales A, Gonzales ML, Magde D, Magde MD Jr, Vandegriff KD, Winslow RM (1998) Arterial blood pressure responses to cell-free hemoglobin solutions and the reaction with nitric oxide. J Biol Chem 273:12128–12134

    Article  CAS  PubMed  Google Scholar 

  • Sakai H (2012) Present situation of the development of cellular-type hemoglobin-based oxygen carrier (hemoglobin-vesicles). Curr Drug Discov Technol 9:188–193

    Article  CAS  PubMed  Google Scholar 

  • San BH, Moh SH, Kim KK (2012) The effect of protein shells on the antioxidation activity of protein-encapsulated platinum nanoparticles. J Mater Chem 22:1774–1780

    Article  CAS  Google Scholar 

  • Shultz SC, Grady B, Cole F, Hamilton I, Burhop K, Malcolm DS (1993) A role for endothelin and nitric oxide in the pressor response to diaspirin cross-linked hemoglobin. J Lab Clin Med 122:301–308

    Google Scholar 

  • Snyder SR, Welty EV, Walder RY, Williams LA, Walder JA (1987) HbXL99α: a hemoglobin derivative that is cross-linked between the α subunits is useful as a blood substitute. Proc Natl Acad Sci U S A 84:7280–7284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squires JE (2002) Artificial blood. Science 295:1002–1005

    Article  CAS  PubMed  Google Scholar 

  • Tomita D, Kimura T, Hosaka H, Daijima Y, Haruki R, Böttcher C, Komatsu T (2013) Covalent core–shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromolecules 14:1816–1825

    Article  CAS  PubMed  Google Scholar 

  • Vandegriff KD, Malavalli A, Wooldbridge J, Lohman W, Winslow RM (2003) MP4, a new nonvasoactive PEG-Hb conjugate. Transfusion 43:509–516

    Article  CAS  PubMed  Google Scholar 

  • Weser U, Schubotz LM (1981) Imidazole-bridged copper complexes as Cu2Zn2-superoxide dismutase models. J Mol Catal 13:249–261

    Article  CAS  Google Scholar 

  • Winslow RM (2003) Current status of blood substitute research: towards a new paradigm. J Intern Med 253:508–517

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Liu ZZ, Georgieva R, Smuda K, Steffen A, Sendeski M, Voigt A, Patzak A, Bäumler H (2013) Nonvasoconstrictive hemoglobin particles as oxygen carriers. ACS Nano 7:7454–7461

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Yokomaku K, Haruki R, Taguchi K, Nagao S, Maruyama T, Otagiri M, Komatsu T (2016) Influence of molecular structure on O2-binding properties and blood circulation of hemoglobin-albumin clusters. PLoS ONE 11:e0149526, in press

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Palmer AF (2010) Polymerization of human hemoglobin using the crosslinker 1,11-bis(maleimido)triethylene glycol for use as an oxygen carrier. Biotechnol Prog 26:1481–1485

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bhatt VS, Sun G, Wang PG, Palmer AF (2008) Site-selective glycosylation of hemoglobin on Cys 93. Bioconjug Chem 19:2221–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Area (“Coordination Programming” Area 2107, No. 21108013) from MEXT Japan, a Chuo University Grant for Special Research, and a Joint Research Grant from the Institute of Science and Engineering, Chuo University. The author acknowledges Prof. Mitsutomo Kohno (Tokai University), Dr. Kazuaki Taguchi, Prof. Masaki Otagiri (Sojo University), and Prof. Toru Maruyama (Kumamoto University) for their great supports and valuable comments on animal experiments, and Dr. Christoph Böttcher (Freie Universität Berlin) for his skillful experiments related to TEM measurements and 3D reconstruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruyuki Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Komatsu, T. (2016). Hemoglobin–Albumin Clusters as a Red Blood Cell Substitute. In: Otagiri, M., Chuang, V. (eds) Albumin in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2116-9_9

Download citation

Publish with us

Policies and ethics