Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 294 Accesses

Abstract

Since the discovery of \({J/\psi }\) in 1974 [1, 2], heavy quarkonium physics has played an important role in revealing and in investigating the QCD at the interplay between the perturbative regime and the non-perturbative regime. However, till now, we are still unable to understand the heavy quarkonium production mechanism very well. In particular, we do not know which theory can describe its production at various colliders. In this chapter, we review the main theoretical background, recent progress, and challenges in heavy quarkonium production physics. The organization of this chapter is: in Sect. 2.1, we will give an introduction of some basic theoretical ideas and establish the notations and nomenclature; in Sect. 2.2, we will present the challenges of theories in confront of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Charmonium is composed of a pair of charm quark and antiquark, whereas bottomonium is composed of a pair of bottom quark and antiquark.

  2. 2.

    Only double real contribution is included at \(\mathscr {O}(\alpha _S^5)\).

  3. 3.

    We call the CS and CO intermediate states as Fock states.

References

  1. J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974). doi:10.1103/PhysRevLett.33.1404.Technicalreport96

    Article  ADS  Google Scholar 

  2. J. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974). doi:10.1103/PhysRevLett.33.1406

    Article  ADS  Google Scholar 

  3. N. Brambilla, et al. (2004)

    Google Scholar 

  4. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005). doi:10.1103/RevModPhys.77.1423

    Article  ADS  Google Scholar 

  5. N. Brambilla, S. Eidelman, B. Heltsley, R. Vogt, G. Bodwin et al., Eur. Phys. J. C 71, 1534 (2011). doi:10.1140/epjc/s10052-010-1534-9

    Article  ADS  Google Scholar 

  6. M. Einhorn, S. Ellis, Phys. Rev. D 12, 2007 (1975). doi:10.1103/PhysRevD.12.2007

    Article  ADS  Google Scholar 

  7. S. Ellis, M.B. Einhorn, C. Quigg, Phys. Rev. Lett. 36, 1263 (1976). doi:10.1103/PhysRevLett.36.1263

    Article  ADS  Google Scholar 

  8. C. Carlson, R. Suaya, Phys. Rev. D 14, 3115 (1976). doi:10.1103/PhysRevD.14.3115

    Article  ADS  Google Scholar 

  9. C.H. Chang, Nucl. Phys. B 172, 425 (1980). doi:10.1016/0550-3213(80)90175-3

    Article  ADS  Google Scholar 

  10. H. Fritzsch, Phys. Lett. B 67, 217 (1977). doi:10.1016/0370-2693(77)90108-3

    Article  ADS  Google Scholar 

  11. F. Halzen, Phys. Lett. B 69, 105 (1977). doi:10.1016/0370-2693(77)90144-7

    Article  ADS  Google Scholar 

  12. M. Gluck, J. Owens, E. Reya, Phys. Rev. D 17, 2324 (1978). doi:10.1103/PhysRevD.17.2324

    Article  ADS  Google Scholar 

  13. V.D. Barger, W.Y. Keung, R. Phillips, Phys. Lett. B 91, 253 (1980). doi:10.1016/0370-2693(80)90444-X

    Article  ADS  Google Scholar 

  14. J. Amundson, O.J. Eboli, E. Gregores, F. Halzen, Phys. Lett. B 372, 127 (1996). doi:10.1016/0370-2693(96)00035-4

    Article  ADS  Google Scholar 

  15. J. Amundson, O.J. Eboli, E. Gregores, F. Halzen, Phys. Lett. B 390, 323 (1997). doi:10.1016/S0370-2693(96)01417-7

    Article  ADS  Google Scholar 

  16. G.T. Bodwin, E. Braaten, G. Lepage, Phys. Rev. D 51, 1125 (1995). doi:10.1103/PhysRevD.51.1125, 10.1103/PhysRevD.55.5853, 10.1103/PhysRevD.51.1125, 10.1103/PhysRevD.55.5853

    Google Scholar 

  17. E. Braaten, S. Fleming, T.C. Yuan, Ann. Rev. Nucl. Part. Sci. 46, 197 (1996). doi:10.1146/annurev.nucl.46.1.197

    Article  ADS  Google Scholar 

  18. G.C. Nayak, J.W. Qiu, G.F. Sterman, Phys. Lett. B 613, 45 (2005). doi:10.1016/j.physletb.2005.03.031

    Article  ADS  Google Scholar 

  19. G.C. Nayak, J.W. Qiu, G.F. Sterman, Phys. Rev. D 72, 114012 (2005). doi:10.1103/PhysRevD.72.114012

    Article  ADS  Google Scholar 

  20. Z.B. Kang, J.W. Qiu, G. Sterman, Phys. Rev. Lett. 108, 102002 (2012). doi:10.1103/PhysRevLett.108.102002 (Latex, 11 pages, 4 figures)

  21. S. Fleming, A.K. Leibovich, T. Mehen, I.Z. Rothstein, Phys. Rev. D 86, 094012 (2012). doi:10.1103/PhysRevD.86.094012

    Article  ADS  Google Scholar 

  22. S. Fleming, A.K. Leibovich, T. Mehen, I.Z. Rothstein, Phys. Rev. D 87, 074022 (2013). doi:10.1103/PhysRevD.87.074022

    Article  ADS  Google Scholar 

  23. Z.B. Kang, Y.Q. Ma, J.W. Qiu, G. Sterman, Phys. Rev. D 90(3), 034006 (2014). doi:10.1103/PhysRevD.90.034006

    Article  ADS  Google Scholar 

  24. G.T. Bodwin, H.S. Chung, U.R. Kim, J. Lee, Phys. Rev. Lett. 113(2), 022001 (2014). doi:10.1103/PhysRevLett.113.022001

    Article  ADS  Google Scholar 

  25. E.J. Eichten, C. Quigg, Phys. Rev. D 52, 1726 (1995). doi:10.1103/PhysRevD.52.1726

    Article  ADS  Google Scholar 

  26. G.A. Schuler, Phys. Rept. (1994)

    Google Scholar 

  27. F. Maltoni, J. Spengler, M. Bargiotti, A. Bertin, M. Bruschi et al., Phys. Lett. B 638, 202 (2006). doi:10.1016/j.physletb.2006.05.010

    Article  ADS  Google Scholar 

  28. S.J. Brodsky, J.P. Lansberg, Phys. Rev. D 81, 051502 (2010). doi:10.1103/PhysRevD.81.051502

    Article  ADS  Google Scholar 

  29. F. Abe et al., Phys. Rev. Lett. 69, 3704 (1992). doi:10.1103/PhysRevLett.69.3704

    Article  ADS  Google Scholar 

  30. F. Abe et al., Phys. Rev. Lett. 79, 572 (1997)

    Article  ADS  Google Scholar 

  31. F. Abe et al., Phys. Rev. Lett. 79, 578 (1997)

    Article  ADS  Google Scholar 

  32. J.M. Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98, 252002 (2007). doi:10.1103/PhysRevLett.98.252002

    Article  ADS  Google Scholar 

  33. P. Artoisenet, J.M. Campbell, J. Lansberg, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008). doi:10.1103/PhysRevLett.101.152001

    Article  ADS  Google Scholar 

  34. B. Gong, J.X. Wang, Phys. Rev. D 78, 074011 (2008). doi:10.1103/PhysRevD.78.074011

    Article  ADS  Google Scholar 

  35. J. Lansberg, J. Phys. G38, 124110 (2011). doi:10.1088/0954-3899/38/12/124110

    Article  ADS  Google Scholar 

  36. S. Chatrchyan et al., Phys. Lett. B 727, 381 (2013). doi:10.1016/j.physletb.2013.10.055

    Article  ADS  Google Scholar 

  37. C.W. Bauer, S. Fleming, M.E. Luke, Phys. Rev. D 63, 014006 (2000). doi:10.1103/PhysRevD.63.014006

    Article  ADS  Google Scholar 

  38. C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart, Phys. Rev. D 63, 114020 (2001). doi:10.1103/PhysRevD.63.114020

    Article  ADS  Google Scholar 

  39. E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993). doi:10.1103/PhysRevLett.71.1673

    Article  ADS  Google Scholar 

  40. E. Braaten, K.M. Cheung, T.C. Yuan. Phys. Rev. D48, 4230 (1993). doi:10.1103/PhysRevD.48.4230

    Google Scholar 

  41. E. Braaten, S. Fleming, Phys. Rev. Lett. 74, 3327 (1995). doi:10.1103/PhysRevLett.74.3327

    Article  ADS  Google Scholar 

  42. E. Braaten, J. Lee, Nucl. Phys. B 586, 427 (2000). doi:10.1016/S0550-3213(00)00396-5

    Article  ADS  Google Scholar 

  43. Y.Q. Ma, J.W. Qiu, H. Zhang, Phys. Rev. D 89(9), 094029 (2014). doi:10.1103/PhysRevD.89.094029

    Article  ADS  Google Scholar 

  44. Y.Q. Ma, J.W. Qiu, H. Zhang, Phys. Rev. D 89(9), 094030 (2014). doi:10.1103/PhysRevD.89.094030

    Article  ADS  Google Scholar 

  45. G.C. Nayak, J.W. Qiu, G.F. Sterman, Phys. Rev. D 74, 074007 (2006). doi:10.1103/PhysRevD.74.074007

    Article  ADS  Google Scholar 

  46. J.C. Collins, D.E. Soper, Nucl. Phys. B 194, 445 (1982). doi:10.1016/0550-3213(82)90021-9

    Article  ADS  Google Scholar 

  47. G. Bodwin (2013). http://indico.ihep.ac.cn/conferenceOtherViews.py?view=standard&confId=2723

  48. G.C. Nayak, J.W. Qiu, G.F. Sterman, Phys. Rev. Lett. 99, 212001 (2007). doi:10.1103/PhysRevLett.99.212001

    Article  ADS  Google Scholar 

  49. G.C. Nayak, J.W. Qiu, G.F. Sterman, Phys. Rev. D 77, 034022 (2008). doi:10.1103/PhysRevD.77.034022

    Article  ADS  Google Scholar 

  50. P.L. Cho, M.B. Wise, Phys. Lett. B 346, 129 (1995). doi:10.1016/0370-2693(94)01658-Y

    Article  ADS  Google Scholar 

  51. A.K. Leibovich, Phys. Rev. D 56, 4412 (1997). doi:10.1103/PhysRevD.56.4412

    Article  ADS  Google Scholar 

  52. E. Braaten, B.A. Kniehl, J. Lee, Phys. Rev. D 62, 094005 (2000). doi:10.1103/PhysRevD.62.094005

    Article  ADS  Google Scholar 

  53. T. Affolder et al., Phys. Rev. Lett. 85, 2886 (2000). doi:10.1103/PhysRevLett.85.2886

    Article  ADS  Google Scholar 

  54. A. Abulencia et al., Phys. Rev. Lett. 99, 132001 (2007). doi:10.1103/PhysRevLett.99.132001

    Article  ADS  Google Scholar 

  55. P. Artoisenet, J. Lansberg, F. Maltoni, Phys. Lett. B 653, 60 (2007). doi:10.1016/j.physletb.2007.04.031 (13 pages, 5 figures)

  56. B. Gong, X.Q. Li, J.X. Wang, Phys. Lett. B 673, 197 (2009). doi:10.1016/j.physletb.2009.02.026, 10.1016/j.physletb.2010.09.031, 10.1016/j.physletb.2009.02.026, 10.1016/j.physletb.2010.09.031

    Google Scholar 

  57. B. Gong, J.X. Wang, Phys. Rev. Lett. 100, 232001 (2008). doi:10.1103/PhysRevLett.100.232001

    Article  ADS  Google Scholar 

  58. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 104, 072001 (2010). doi:10.1103/PhysRevLett.104.072001

    Article  ADS  Google Scholar 

  59. Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. D 83, 111503 (2011). doi:10.1103/PhysRevD.83.111503

    Article  ADS  Google Scholar 

  60. Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. Lett. 106, 042002 (2011). doi:10.1103/PhysRevLett.106.042002

    Article  ADS  Google Scholar 

  61. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011). doi:10.1103/PhysRevLett.106.022003

    Article  ADS  Google Scholar 

  62. Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. D 84, 114001 (2011). doi:10.1103/PhysRevD.84.114001

    Article  ADS  Google Scholar 

  63. M. Butenschoen, B.A. Kniehl (2011)

    Google Scholar 

  64. M. Butenschoen, B.A. Kniehl, Phys. Rev. D 84, 051501 (2011). doi:10.1103/PhysRevD.84.051501

    Article  ADS  Google Scholar 

  65. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 108, 172002 (2012)

    Article  ADS  Google Scholar 

  66. K.T. Chao, Y.Q. Ma, H.S. Shao, K. Wang, Y.J. Zhang, Phys. Rev. Lett. 108, 242004 (2012)

    Article  ADS  Google Scholar 

  67. B. Gong, L.P. Wan, J.X. Wang, H.F. Zhang, Phys. Rev. Lett. 110, 042002 (2013)

    Article  ADS  Google Scholar 

  68. H.S. Shao, Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. Lett. 112(18), 182003 (2014). doi:10.1103/PhysRevLett.112.182003

    Article  ADS  Google Scholar 

  69. P. Faccioli, V. Knnz. Phys. Lett. B736, 98 (2014). doi:10.1016/j.physletb.2014.07.006

    Google Scholar 

  70. Y. Fan, Y.Q. Ma, K.T. Chao, Phys. Rev. D 79, 114009 (2009). doi:10.1103/PhysRevD.79.114009

    Article  ADS  Google Scholar 

  71. G.Z. Xu, Y.J. Li, K.Y. Liu, Y.J. Zhang, Phys. Rev. D 86, 094017 (2012). doi:10.1103/PhysRevD.86.094017

    Article  ADS  Google Scholar 

  72. J. Lansberg (2010)

    Google Scholar 

  73. E. Braaten, J. Russ, Ann. Rev. Nucl. Part. Sci. 64, 221 (2014). doi:10.1146/annurev-nucl-030314-044352

    Article  ADS  Google Scholar 

  74. H.S. Shao, K.T. Chao, Phys. Rev. D 90(1), 014002 (2014). doi:10.1103/PhysRevD.90.014002

    Article  ADS  Google Scholar 

  75. H.S. Shao, H. Han, Y.Q. Ma, C. Meng, Y.J. Zhang, K.T. Chao, JHEP 05, 103 (2015). doi:10.1007/JHEP05(2015)103

    Article  ADS  Google Scholar 

  76. Y.J. Zhang, K.T. Chao, Phys. Rev. Lett. 98, 092003 (2007). doi:10.1103/PhysRevLett.98.092003

    Article  ADS  Google Scholar 

  77. B. Gong, J.X. Wang, Phys. Rev. D 80, 054015 (2009). doi:10.1103/PhysRevD.80.054015

    Article  ADS  Google Scholar 

  78. Y.Q. Ma, Y.J. Zhang, K.T. Chao, Phys. Rev. Lett. 102, 162002 (2009). doi:10.1103/PhysRevLett.102.162002

    Article  ADS  Google Scholar 

  79. B. Gong, J.X. Wang, Phys. Rev. Lett. 102, 162003 (2009). doi:10.1103/PhysRevLett.102.162003

    Article  ADS  Google Scholar 

  80. Z.G. He, Y. Fan, K.T. Chao, Phys. Rev. D 81, 054036 (2010). doi:10.1103/PhysRevD.81.054036

    Article  ADS  Google Scholar 

  81. Y. Jia, Phys. Rev. D 82, 034017 (2010). doi:10.1103/PhysRevD.82.034017

    Article  ADS  Google Scholar 

  82. Y.J. Zhang, Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. D 81, 034015 (2010). doi:10.1103/PhysRevD.81.034015

    Article  ADS  Google Scholar 

  83. H.S. Shao, JHEP 04, 182 (2014)

    Article  ADS  Google Scholar 

  84. M. Kramer, J. Zunft, J. Steegborn, P. Zerwas, Phys. Lett. B 348, 657 (1995). doi:10.1016/0370-2693(95)00155-E

    Article  ADS  Google Scholar 

  85. S.P. Baranov, Phys. Rev. D 66, 114003 (2002). doi:10.1103/PhysRevD.66.114003

    Article  ADS  Google Scholar 

  86. B. Kniehl, D. Vasin, V. Saleev, Phys. Rev. D 73, 074022 (2006). doi:10.1103/PhysRevD.73.074022

    Article  ADS  Google Scholar 

  87. A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, M.L. Mangano, Nucl. Phys. B 514, 245 (1998). doi:10.1016/S0550-3213(97)00801-8

    Article  ADS  Google Scholar 

  88. R. Li, J.X. Wang, Phys. Rev. D 89(11), 114018 (2014). doi:10.1103/PhysRevD.89.114018

    Article  ADS  Google Scholar 

  89. R. Li, J.X. Wang, Phys. Lett. B 672, 51 (2009). doi:10.1016/j.physletb.2008.12.050

    Article  ADS  Google Scholar 

  90. S. Mao, M. Wen-Gan, L. Gang, Z. Ren-You, G. Lei, JHEP 1102, 071 (2011). doi:10.1007/JHEP12(2012)010, 10.1007/JHEP02(2011)071

  91. B. Gong, J.P. Lansberg, C. Lorce, J. Wang, JHEP 1303, 115 (2013). doi:10.1007/JHEP03(2013)115

    Article  ADS  Google Scholar 

  92. G. Li, M. Song, R.Y. Zhang, W.G. Ma, Phys. Rev. D 83, 014001 (2011). doi:10.1103/PhysRevD.83.014001

    Article  ADS  Google Scholar 

  93. J. Lansberg, C. Lorce, Phys. Lett. B 726, 218 (2013). doi:10.1016/j.physletb.2013.07.059

    Article  ADS  Google Scholar 

  94. J.P. Lansberg, H.S. Shao, Phys. Rev. Lett. 111, 122001 (2013). doi:10.1103/PhysRevLett.111.122001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Sheng Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shao, HS. (2016). Background of Heavy Quarkonium Physics. In: Heavy Quarkonium Production Phenomenology and Automation of One-Loop Scattering Amplitude Computations. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1624-0_2

Download citation

Publish with us

Policies and ethics