Skip to main content

Identification and Assessment of Heavy Metal Pollution Using Nucleic Acid-Mediated Technologies

  • Chapter
  • First Online:
Functional Nucleic Acids Detection in Food Safety
  • 835 Accesses

Abstract

Heavy metal ions in polluted drinking water or in plants have attracted increasing public attention because of their extremely harmful effects on human beings and ecological equilibria. Therefore, identifying and assessing heavy metal pollution in different substrates are important. Traditional heavy metal ion detection methods, such as atomic absorption spectroscopy, electron capture devices, inductively coupled plasma optical emission spectroscopy, and mass spectrometry, which can be coupled to chromatographic techniques, require the use of large instruments. These techniques have high sensitivity to and specificity for different ions. However, the large, expensive instruments required by these techniques hinder the rapid, cost-effective detection of heavy metal ions in real applications. Thus, these methods are not suitable for real-time detection, and numerous studies have focused on making heavy metal ion detection more convenient and feasible. Accordingly, detection methods based on nucleic acid signal transmission have been developed to achieve rapid or real-time detection. In this review, the necessity of heavy metal ion detection methods, the advantages and drawbacks of traditional detection methods, and the latest nucleic acid-based detection methods are discussed. Moreover, the prospective applications of the different nucleic acid-based detection methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tekaya N, Saiapina O, Ben Ouada H, et al. Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis. Environ Pollut. 2013;178:182–8.

    Article  CAS  PubMed  Google Scholar 

  2. Singh A, Sharma RK, Agrawal M, Marshall FM. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol. 2010;48:611–9.

    Article  CAS  PubMed  Google Scholar 

  3. Rogers KR. Biosensors for environmental applications. Biosens Bioelectron. 1995;10:533–41.

    Article  CAS  Google Scholar 

  4. Turdean GGL. Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem. 2011;2011:1–15.

    Article  CAS  Google Scholar 

  5. Gao C, Yu XY, Xiong SQ, et al. Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem. 2013;85:2673–80.

    Article  CAS  PubMed  Google Scholar 

  6. Tag K, Riedel K, Bauer H-J, et al. Amperometric detection of Cu2+ by yeast biosensors using flow injection analysis (FIA). Sensors Actuators B Chem. 2007;122:403–9.

    Article  CAS  Google Scholar 

  7. Arao T, Ishikawa S, Murakami M, et al. Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ. 2010;8:247–57.

    Article  Google Scholar 

  8. Guascito MR, Malitesta C, Mazzotta E, Turco A. Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor. Sensors Actuators B Chem. 2008;131:394–402.

    Article  CAS  Google Scholar 

  9. Li M, Gou H, Al-Ogaidi I, Wu N. Nanostructured sensors for detection of heavy metals: a review. ACS Sustain Chem Eng. 2013;1:713–23.

    Article  CAS  Google Scholar 

  10. Bagal-Kestwal D, Karve MS, Kakade B, Pillai VK. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: application of ultra-microelectrode to enhance sucrose biosensor’s sensitivity. Biosens Bioelectron. 2008;24:657–64.

    Article  CAS  PubMed  Google Scholar 

  11. Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.

    Article  CAS  PubMed  Google Scholar 

  12. Patrick L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev. 2006;11:114–27.

    PubMed  Google Scholar 

  13. Han YH, Kim SZ, Kim SH, Park WH. Suppression of arsenic trioxide-induced apoptosis in HeLa cells by N-acetylcysteine. Mol Cells. 2008;26:18–25.

    PubMed  Google Scholar 

  14. Ho S-Y, Wu W-J, Chiu H-W, et al. Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways. Chem Biol Interact. 2011;193:162–71.

    Article  CAS  PubMed  Google Scholar 

  15. Jin YH, Clark AB, Slebos RJC, et al. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet. 2003;34:326–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wieland M, Levin MK, Hingorani KS, et al. Mechanism of cadmium-mediated inhibition of Msh2-Msh6 function in DNA mismatch repair. Biochemistry. 2009;48:9492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kobal AB, Horvat M, Prezelj M, et al. The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol. 2004;17:261–74.

    Article  CAS  PubMed  Google Scholar 

  18. Srikanth K, Ahmad I, Rao JV, et al. Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition. Comp Biochem Physiol C Toxicol Pharmacol. 2014;162:7–14.

    Article  CAS  PubMed  Google Scholar 

  19. Jarup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167–82.

    Article  PubMed  Google Scholar 

  20. Falco G, Llobet JM, Bocio A, Domingo JL. Daily intake of arsenic, cadmium, mercury, and lead by consumption of edible marine species. J Agric Food Chem. 2006;54:6106–12.

    Article  CAS  PubMed  Google Scholar 

  21. Monteiro DA, Rantin FT, Kalinin AL. Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology. 2010;19:105–23.

    Article  CAS  PubMed  Google Scholar 

  22. Linšak Ž, Linšak DT, Špirić Z, et al. Effects of mercury on glutathione and glutathione-dependent enzymes in hares (Lepus europaeus Pallas). J Environ Sci Health A-Toxic/Hazard Subst Environ Eng. 2013;48:1325–32.

    Article  CAS  Google Scholar 

  23. Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int. 2011;2011:457327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong H, Li X. Y-type, C-rich DNA probe for electrochemical detection of silver ion and cysteine. Analyst. 2011;136:2242–6.

    Article  CAS  PubMed  Google Scholar 

  25. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells – SOM. ACS Nano. 2009;3:279–90.

    Article  CAS  PubMed  Google Scholar 

  26. Cano-Pavon JM, De Torres AG, Sánchez-Rojas F, Cañada-Rudner P. Analytical methods for mercury speciation in environmental and biological samples-An overview. Int J Environ Anal Chem. 1999;75:93–106.

    Article  CAS  Google Scholar 

  27. Bunka DHJ, Stockley PG. Aptamers come of age – at last. Nat Rev Microbiol. 2006;4:588–96.

    Article  CAS  PubMed  Google Scholar 

  28. O’Sullivan CK. Aptasensors – the future of biosensing? Anal Bioanal Chem. 2002;372:44–8.

    Article  PubMed  CAS  Google Scholar 

  29. Brody EN, Willis MC, Smith JD, et al. The use of aptamers in large arrays for molecular diagnostics. Mol Diagnosis. 1999;4:381–8.

    Article  CAS  Google Scholar 

  30. Lee JF, Hesselberth JR, Meyers LA, Ellington AD. Aptamer database. Nucleic Acids Res. 2004;32:D95–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruesehoff PJ, Li J, Augustine AJ, Lu Y. Improving metal ion specificity during in vitro selection of catalytic DNA. Comb Chem High Throughput Screen. 2002;5:327–35.

    Article  CAS  PubMed  Google Scholar 

  32. Shen Y, Mackey G, Rupcich N, et al. Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing. Anal Chem. 2007;79:3494–503.

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev. 2009;109(5):1948–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Lu Y. Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods Mol Biol. 2006;335:275–88.

    CAS  PubMed  Google Scholar 

  35. Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc. 2005;127:12677–83.

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc. 2004;126:12298–305.

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Lu Y. Optimization of a Pb2+-directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chem Mater. 2004;16:3231–8.

    Article  CAS  Google Scholar 

  38. Liu J, Lu Y. Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc. 2004;14:343–54.

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Lu Y. Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. Anal Chem. 2003;75:6666–72.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst. 2014;139(24):6326–42.

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc. 2000;122:10466–7.

    Article  CAS  Google Scholar 

  42. Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett. 2004;4:1683–7.

    Article  CAS  Google Scholar 

  43. Cheng Y, Huang Y, Lei J, et al. Design and biosensing of Mg2+-dependent DNAzyme-triggered ratiometric electrochemiluminescence. Anal Chem. 2014;86:5158–63.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Wang L-J, Zhang C-Y. Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Chem Commun (Camb). 2014;50:1909–11.

    Article  CAS  Google Scholar 

  45. Lu Y. New transition-metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chem A Eur J. 2002;8:4588–96.

    Article  CAS  Google Scholar 

  46. Zhang ZZ, Zhang CY. Highly sensitive detection of protein with aptamer-based target-triggering two-stage amplification. Anal Chem. 2012;84:1623–9.

    Article  CAS  PubMed  Google Scholar 

  47. Herr JK, Smith JE, Medley CD, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem. 2006;78:2918–24.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang CY, Johnson LW. Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem. 2009;81:3051–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xue L, Zhou X, Xing D. Highly sensitive protein detection based on aptamer probe and isothermal nicking enzyme assisted fluorescence signal amplification. Chem Commun (Camb). 2010;46:7373–5.

    Article  CAS  Google Scholar 

  50. Yang K, Zhang C. Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor. Biosens Bioelectron. 2011;28:257–62.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou X, Tang Y, Xing D. One-step homogeneous protein detection based on aptamer probe and fluorescence cross-correlation spectroscopy. Anal Chem. 2011;83:2906–12.

    Article  CAS  PubMed  Google Scholar 

  52. Sassolas A, Blum LJ, Leca-Bouvier BD. Homogeneous assays using aptamers. Analyst. 2011;136:257–74.

    Article  CAS  PubMed  Google Scholar 

  53. Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed. 2004;43:4300–2.

    Article  CAS  Google Scholar 

  54. Miyake Y, Togashi H, Tashiro M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc. 2006;128:2172–3.

    Article  CAS  PubMed  Google Scholar 

  55. Ono A, Cao S, Togashi H, et al. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem Commun. 2008;39:4825–7.

    Article  CAS  Google Scholar 

  56. Pan T, Uhlenbeck OC. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry. 1992;31:3887–95.

    Article  CAS  PubMed  Google Scholar 

  57. Pan T, Uhlenbeck OC. A small metalloribozyme with a two-step mechanism. Nature. 1992;358:560–3.

    Article  CAS  PubMed  Google Scholar 

  58. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997;94:4262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown AK, Li J, Pavot CM-B, Lu Y. A lead-dependent DNAzyme with a two-step mechanism. Biochemistry. 2003;42:7152–61.

    Article  CAS  PubMed  Google Scholar 

  60. Peracchi A, Bonaccio M, Clerici M. A mutational analysis of the 8-17 deoxyribozyme core. J Mol Biol. 2005;352:783–94.

    Article  CAS  PubMed  Google Scholar 

  61. Faulhammer D, Famulok M. The Ca2+ ion as a cofactor for a novel RNA‐cleaving deoxyribozyme. Angew Chem Int Ed Engl. 1996;35:2837–41.

    Article  CAS  Google Scholar 

  62. Peracchi A. Preferential activation of the 8-17 deoxyribozyme by Ca(2+) ions. Evidence for the identity of 8-17 with the catalytic domain of the Mg5 deoxyribozyme. J Biol Chem. 2000;275:11693–7.

    Article  CAS  PubMed  Google Scholar 

  63. Li J, Zheng W, Kwon AH, Lu Y. In vitro selection and characterization of a highly efficient Zn (II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 2000;28:481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cruz RPG, Withers JB, Li Y. Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. Chem Biol. 2004;11:57–67.

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Lu Y. FRET study of a trifluorophore-labeled DNAzyme. J Am Chem Soc. 2002;124:15208–16.

    Article  CAS  PubMed  Google Scholar 

  66. Kim HK, Liu J, Li J, et al. Metal-dependent global folding and activity of the 8-17 DNAzyme studied by fluorescence resonance energy transfer. J Am Chem Soc. 2007;129:6896–902.

    Article  CAS  PubMed  Google Scholar 

  67. Kim H-K, Rasnik I, Liu J, et al. Dissecting metal ion-dependent folding and catalysis of a single DNAzyme. Nat Chem Biol. 2007;3:763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santoro SW, Joyce GF, Sakthivel K, et al. RNA cleavage by a DNA enzyme with extended chemical functionality. J Am Chem Soc. 2000;122:2433–9.

    Article  CAS  PubMed  Google Scholar 

  69. Carmi N, Balkhi SR, Breaker RR. Cleaving DNA with DNA. Proc Natl Acad Sci U S A. 1998;95:2233–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carmi N, Shultz LA, Breaker RR. In vitro selection of self-cleaving DNAs. Chem Biol. 1996;3:1039–46.

    Article  CAS  PubMed  Google Scholar 

  71. Carmi N, Breaker RR. Characterization of a DNA-cleaving deoxyribozyme. Bioorg Med Chem. 2001;9:2589–600.

    Article  CAS  PubMed  Google Scholar 

  72. Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu 2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc. 2007;129:9838–9.

    Article  CAS  PubMed  Google Scholar 

  73. Cuenoud B, Szostak JW. A DNA metalloenzyme with DNA ligase activity. Nature. 1995;375:611–4.

    Article  CAS  PubMed  Google Scholar 

  74. Wang W, Billen LP, Li Y. Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. Chem Biol. 2002;9:507–17.

    Article  CAS  PubMed  Google Scholar 

  75. Chiuman W, Li Y. Revitalization of six abandoned catalytic DNA species reveals a common three-way junction framework and diverse catalytic cores. J Mol Biol. 2006;357:748–54.

    Article  CAS  PubMed  Google Scholar 

  76. Liu Z, Mei SHJ, Brennan JD, Li Y. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J Am Chem Soc. 2003;125:7539–45.

    Article  CAS  PubMed  Google Scholar 

  77. Nelson KE, Bruesehoff PJ, Lu Y. In vitro selection of high temperature Zn2+-dependent DNAzymes. J Mol Evol. 2005;61:216–25.

    Article  CAS  PubMed  Google Scholar 

  78. Dubertret B, Calame M, Libchabera J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol. 2001;19:365–70.

    Article  CAS  PubMed  Google Scholar 

  79. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol. 1998;16:49–53.

    Article  CAS  PubMed  Google Scholar 

  80. Tyagi S, Marras SA, Kramer FR. Wavelength-shifting molecular beacons. Nat Biotechnol. 2000;18:1191–6.

    Article  CAS  PubMed  Google Scholar 

  81. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303–8.

    Article  CAS  PubMed  Google Scholar 

  82. Cao Z, Suljak SW, Tan W. Molecular beacon aptamers for protein monitoring in real-time and in homogeneous solutions. Curr Proteomics. 2005;2:31–40.

    Article  CAS  Google Scholar 

  83. Stojanovic MN, de Prada P, Landry DW. Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Res. 2000;28:2915–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vitiello D, Pecchia DB, Burke JM. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer. RNA. 2000;6:628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jenne A, Hartig JS, Piganeau N, et al. Rapid identification and characterization of hammerhead-ribozyme inhibitors using fluorescence-based technology. Nat Biotechnol. 2001;19:56–61.

    Article  CAS  PubMed  Google Scholar 

  86. Singh KK, Parwaresch R, Krupp G. Rapid kinetic characterization of hammerhead ribozymes by real-time monitoring of fluorescence resonance energy transfer (FRET). RNA. 1999;5:1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160:629–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Walter NG, Burke JM. Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA. 1997;3:392–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Perkins TA, Wolf DE, Goodchild J. Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide. Biochemistry. 1996;35:16370–7.

    Article  CAS  PubMed  Google Scholar 

  90. Liu J, Brown AK, Meng X, et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A. 2007;104:2056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boulyga SF, Heumann KG. Determination of extremely low 236U/238U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction. J Environ Radioact. 2006;88:1–10.

    Article  CAS  PubMed  Google Scholar 

  92. Carmi N, Breaker RR. Characterization of a DNA-cleaving deoxyribozyme. Bioorganic Med Chem. 2001;9:2589–600.

    Article  CAS  Google Scholar 

  93. Zhao W, Lam JCF, Chiuman W, et al. Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small. 2008;4:810–6.

    Article  CAS  PubMed  Google Scholar 

  94. Wei H, Li BL, Li J, et al. DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology. 2008;19:095501.

    Article  PubMed  CAS  Google Scholar 

  95. Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed. 2007;46:4093–6.

    Article  CAS  Google Scholar 

  96. Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold- nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed. 2008;47:3927–31.

    Article  CAS  Google Scholar 

  97. Chen L, Lu W, Wang X, Chen L. A highly selective and sensitive colorimetric sensor for iodide detection based on anti-aggregation of gold nanoparticles. Sensors Actuators B Chem. 2013;182:482–8.

    Article  CAS  Google Scholar 

  98. Xu X, Wang J, Jiao K, Yang X. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens Bioelectron. 2009;24:3153–8.

    Article  CAS  PubMed  Google Scholar 

  99. Chai F, Wang C, Wang T, et al. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces. 2010;2:1466–70.

    Article  CAS  PubMed  Google Scholar 

  100. Liu C-W, Hsieh Y-T, Huang C-C, et al. Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun (Camb). 2008;22:2242–4.

    Article  CAS  Google Scholar 

  101. Xia F, Zuo X, Yang R, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A. 2010;107:10837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li T, Dong S, Wang E. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem. 2009;81:2144–9.

    Article  CAS  PubMed  Google Scholar 

  103. Li T, Li B, Wang E, Dong S. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem Commun (Camb). 2009;24:3551–3.

    Article  CAS  Google Scholar 

  104. Li J, Yao J, Zhong W. Membrane blotting for rapid detection of mercury(II) in water. Chem Commun (Camb). 2009;137:4962–4.

    Article  CAS  Google Scholar 

  105. Wang J, Liu B. Highly sensitive and selective detection of Hg(2+) in aqueous solution with mercury-specific DNA and Sybr Green I. Chem Commun (Camb). 2008;39:4759–61.

    Article  CAS  Google Scholar 

  106. Zhang Z, Yin J, Wu Z, Yu R. Electrocatalytic assay of mercury(II) ions using a bifunctional oligonucleotide signal probe. Anal Chim Acta. 2013;762:47–53.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Z, Tang A, Liao S, et al. Oligonucleotide probes applied for sensitive enzyme-amplified electrochemical assay of mercury(II) ions. Biosens Bioelectron. 2011;26:3320–4.

    Article  CAS  PubMed  Google Scholar 

  108. Wu D, Zhang Q, Chu X, et al. Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA. Biosens Bioelectron. 2010;25:1025–31.

    Article  CAS  PubMed  Google Scholar 

  109. Liu SJ, Nie HG, Jiang JH, et al. Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination. Anal Chem. 2009;81:5724–30.

    Article  CAS  PubMed  Google Scholar 

  110. Han D, Kim Y-R, Oh J-W, et al. A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II). Analyst. 2009;134:1857–62.

    Article  CAS  PubMed  Google Scholar 

  111. Tang X, Liu H, Zou B, et al. A fishnet electrochemical Hg 2+ sensing strategy based on gold nanoparticle-bioconjugate and thymine–Hg 2+–thymine coordination chemistry. Analyst. 2012;137:309–11.

    Article  CAS  PubMed  Google Scholar 

  112. Gong JL, Sarkar T, Badhulika S, Mulchandani A. Label-free chemiresistive biosensor for mercury (II) based on single-walled carbon nanotubes and structure-switching DNA. Appl Phys Lett. 2013. doi:10.1063/1.4773569.

    PubMed  PubMed Central  Google Scholar 

  113. Li H, Xue Y, Wang W. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator. Biosens Bioelectron. 2014;54:317–22.

    Article  CAS  PubMed  Google Scholar 

  114. Eda G, Lin YY, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide. Adv Mater. 2010;22:505–9.

    Article  CAS  PubMed  Google Scholar 

  115. Bingol H, Kocabas E, Zor E, Coskun A. A novel benzothiazole based azocalix[4]arene as a highly selective chromogenic chemosensor for Hg2+ ion: a rapid test application in aqueous environment. Talanta. 2010;82:1538–42.

    Article  CAS  PubMed  Google Scholar 

  116. Wilson D, Del Valle M, Alegret S, et al. Potentiometric electronic tongue-flow injection analysis system for the monitoring of heavy metal biosorption processes. Talanta. 2012;93:285–92.

    Article  CAS  PubMed  Google Scholar 

  117. Chandrasoma A, Hamid AAA, Bruce AE, et al. An infrared spectroscopic based method for mercury(II) detection in aqueous solutions. Anal Chim Acta. 2012;728:57–63.

    Article  CAS  PubMed  Google Scholar 

  118. Fu X, Lou T, Chen Z, et al. “Turn-on” fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. ACS Appl Mater Interfaces. 2012;4:1080–6.

    Article  CAS  PubMed  Google Scholar 

  119. Jung JH, Cheon DS, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem Int Ed Engl. 2010;49:5708–11.

    Article  CAS  PubMed  Google Scholar 

  120. Huang X, Lan T, Zhang B, Ren J. Gold nanoparticle–enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction. Analyst. 2012;137:3659–66.

    Article  CAS  PubMed  Google Scholar 

  121. Kundu A, Layek RK, Kuila A, Nandi AK. Highly fluorescent graphene oxide-poly(vinyl alcohol) hybrid: an effective material for specific Au 3+ ion sensors. ACS Appl Mater Interfaces. 2012;4:5576–82.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang W, Wei J, Zhu H, et al. Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper(ii) based on anodic stripping voltammetry. J Mater Chem. 2012;22:22631.

    Article  CAS  Google Scholar 

  123. Zhou N, Chen H, Li J, Chen L. Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim Acta. 2013;180:493–9.

    Article  CAS  Google Scholar 

  124. Wu S, He Q, Tan C, et al. Graphene-based electrochemical sensors. Small. 2013;9:1160–72.

    Article  CAS  PubMed  Google Scholar 

  125. Wang B, Chang YH, Zhi LJ. High yield production of graphene and its improved property in detecting heavy metal ions. Xinxing Tan Cailiao/New Carbon Mater. 2011;26:31–5.

    Article  CAS  Google Scholar 

  126. Chow E, Goading JJ. Peptide modified electrodes as electrochemical metal ion sensors. Electroanalysis. 2006;18:1437–48.

    Article  CAS  Google Scholar 

  127. Çeken B, Kandaz M, Koca A. Electrochemical metal-ion sensors based on a novel manganese phthalocyanine complex. Synth Met. 2012;162:1524–30.

    Article  CAS  Google Scholar 

  128. Li J, Guo S, Zhai Y, Wang E. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta. 2009;649:196–201.

    Article  CAS  PubMed  Google Scholar 

  129. Chen TY, Leddy J. Ion exchange capacity of Nafion and Nafion composites. Langmuir. 2000;16:2866–71.

    Article  CAS  Google Scholar 

  130. Schrenk MJ, Villigram RE, Torrence NJ, et al. Effects of mixture casting Nafion?? with quaternary ammonium bromide salts on the ion-exchange capacity and mass transport in the membranes. J Memb Sci. 2002;205:3–10.

    Article  CAS  Google Scholar 

  131. Iwai Y, Hiroki A, Tamada M, Yamanishi T. Radiation deterioration in mechanical properties and ion exchange capacity of Nafion N117 swelling in water. J Memb Sci. 2008;322:249–55.

    Article  CAS  Google Scholar 

  132. Willemse CM, Tlhomelang K, Jahed N, et al. Metallo-Graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions. Sensors. 2011;11:3970–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fan M, Andrade GFS, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta. 2011;693:7–25.

    Article  CAS  PubMed  Google Scholar 

  134. Álvarez-Puebla RA, Liz-Marzán LM. Environmental applications of plasmon assisted Raman scattering. Energy Environ Sci. 2010;3:1011.

    Article  CAS  Google Scholar 

  135. Halvorson RA, Vikesland PJ. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ Sci Technol. 2010;44:7749–55.

    Article  CAS  PubMed  Google Scholar 

  136. Li J, Chen L, Lou T, Wang Y. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Appl Mater Interfaces. 2011;3:3936–41.

    Article  CAS  PubMed  Google Scholar 

  137. Mulvihill M, Tao A, Benjauthrit K, et al. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew Chem Int Ed. 2008;47:6456–60.

    Article  CAS  Google Scholar 

  138. Han MJ, Hao J, Xu Z, Meng X. Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Anal Chim Acta. 2011;692:96–102.

    Article  CAS  PubMed  Google Scholar 

  139. Yin J, Wu T, Song J, et al. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem Mater. 2011;23:4756–64.

    Article  CAS  Google Scholar 

  140. Wang Y, Irudayaraj J. A SERS DNAzyme biosensor for lead ion detection. Chem Commun (Camb). 2011;47:4394–6.

    Article  CAS  Google Scholar 

  141. Li P, Liu H, Yang L, Liu J. Sensitive and selective SERS probe for Hg(II) detection using aminated ring-close structure of Rhodamine 6G. Talanta. 2013;106:381–7.

    Article  CAS  PubMed  Google Scholar 

  142. Ma Y, Liu H, Qian K, et al. A displacement principle for mercury detection by optical waveguide and surface enhanced Raman spectroscopy. J Colloid Interface Sci. 2012;386:451–5.

    Article  CAS  PubMed  Google Scholar 

  143. Li K, Liang A, Jiang C, et al. A stable and reproducible nanosilver-aggregation-4-mercaptopyridine surface-enhanced Raman scattering probe for rapid determination of trace Hg2+. Talanta. 2012;99:890–6.

    Article  CAS  PubMed  Google Scholar 

  144. Choo J, Lim C, Chen L, et al. Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Anal Bioanal Chem. 2009;394:1827–32.

    Article  PubMed  CAS  Google Scholar 

  145. Han D, Lim SY, Kim BJ, et al. Mercury(ii) detection by SERS based on a single gold microshell. Chem Commun (Camb). 2010;46:5587–9.

    Article  CAS  Google Scholar 

  146. Chen J, Zheng A, Gao Y, et al. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc. 2008;69:1044–52.

    Article  PubMed  CAS  Google Scholar 

  147. Chen J, Gao Y, Xu Z, et al. A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal Chim Acta. 2006;577:77–84.

    Article  CAS  PubMed  Google Scholar 

  148. Ali EM, Zheng Y, Yu HH, Ying JY. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem. 2007;79:9452–8.

    Article  CAS  PubMed  Google Scholar 

  149. Koneswaran M, Narayanaswamy R. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II). Sensors Actuators B Chem. 2009;139:91–6.

    Article  CAS  Google Scholar 

  150. Deka S, Quarta A, Lupo MG, et al. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. J Am Chem Soc. 2009;131:2948–58.

    Article  CAS  PubMed  Google Scholar 

  151. Duan J, Jiang X, Ni S, et al. Facile synthesis of N-acetyl-l-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg 2+. Talanta. 2011;85:1738–43.

    Article  CAS  PubMed  Google Scholar 

  152. Banerjee S, Kar S, Santra S. A simple strategy for quantum dot assisted selective detection of cadmium ions. Chem Commun (Camb). 2008;1:3037–9.

    Article  CAS  Google Scholar 

  153. Algar WR, Tavares AJ, Krull UJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta. 2010;673:1–25.

    Article  CAS  PubMed  Google Scholar 

  154. Medintz IL, Clapp AR, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater. 2003;2:630–8.

    Article  CAS  PubMed  Google Scholar 

  155. Van Ness J, Van Ness LK, Galas DJ. Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci U S A. 2003;100:4504–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yin J, He X, Jia X, et al. Highly sensitive label-free fluorescent detection of Hg2+ ions by DNA molecular machine-based Ag nanoclusters. Analyst. 2013;138:2350–6.

    Article  CAS  PubMed  Google Scholar 

  157. Zou B, Ma Y, Wu H, Zhou G. Ultrasensitive DNA detection by cascade enzymatic signal amplification based on Afu flap endonuclease coupled with nicking endonuclease. Angew Chem – Int Ed. 2011;50:7395–8.

    Article  CAS  Google Scholar 

  158. Xue L, Zhou X, Xing D. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem. 2012;84:3507–13.

    Article  CAS  PubMed  Google Scholar 

  159. Li JJ, Chu Y, Lee BYH, Xie XS. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res. 2008. doi:10.1093/nar/gkn033.

    Google Scholar 

  160. Zhu G, Yang K, Zhang C, Yang. Sensitive detection of methylated DNA using the short linear quencher-fluorophore probe and two-stage isothermal amplification assay. Biosens Bioelectron. 2013;49:170–5.

    Article  CAS  PubMed  Google Scholar 

  161. Ma J, Chen Y, Hou Z, et al. Selective and sensitive mercuric (ii) ion detection based on quantum dots and nicking endonuclease assisted signal amplification. Biosens Bioelectron. 2013;43:84–7.

    Article  CAS  PubMed  Google Scholar 

  162. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A. 2004;101:15275–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Huang J, Wu Y, Chen Y, et al. Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed. 2011;50:401–4.

    Article  CAS  Google Scholar 

  164. Xu Q, Zhu G, Zhang CY. Homogeneous bioluminescence detection of biomolecules using target-triggered hybridization chain reaction-mediated ligation without luciferase label. Anal Chem. 2013;85:6915–21.

    Article  CAS  PubMed  Google Scholar 

  165. Xu N, Wang Q, Lei J, et al. Label-free triple-helix aptamer as sensing platform for “signal-on” fluorescent detection of thrombin. Talanta. 2015;132:387–91.

    Article  CAS  PubMed  Google Scholar 

  166. Huang J, Gao X, Jia J, et al. Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal Chem. 2014;86:3209–15.

    Article  CAS  PubMed  Google Scholar 

  167. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci. 1999;96:9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sanders R, Huggett JF, Bushell CA, et al. Evaluation of digital PCR for absolute DNA quantification. Anal Chem. 2011;83:6474–84.

    Article  CAS  PubMed  Google Scholar 

  169. Miotto E, Saccenti E, Lupini L, et al. Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen- and TaqMan-based chemistries. Cancer Epidemiol Biomarkers Prev. 2014;23:2638–42.

    Article  CAS  PubMed  Google Scholar 

  170. Pinheiro LB, Coleman VA, Hindson CM, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem. 2012;84:1003–11.

    Article  CAS  PubMed  Google Scholar 

  171. Hindson BJ, Ness KD, Masquelier DA, Colston BW. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83:8604–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Burns MJ, Burrell AM, Foy CA. The applicability of digital PCR for the assessment of detection limits in GMO analysis. Eur Food Res Technol. 2010;231:353–62.

    Article  CAS  Google Scholar 

  173. Demeke T, Gräfenhan T, Holigroski M, et al. Assessment of droplet digital PCR for absolute quantification of genetically engineered OXY235 canola and DP305423 soybean samples. Food Control. 2014;46:470–4.

    Article  CAS  Google Scholar 

  174. Corbisier P, Bhat S, Partis L, et al. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal Bioanal Chem. 2010;396:2143–50.

    Article  CAS  PubMed  Google Scholar 

  175. Morisset D, Štebih D, Milavec M, et al. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One. 2013;8:e62583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technology of Beijing (XX2014B069). Many thanks to Pengyu Zhu, for his kindly help in manuscript conception and preparation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Xu, W. (2016). Identification and Assessment of Heavy Metal Pollution Using Nucleic Acid-Mediated Technologies. In: Functional Nucleic Acids Detection in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-10-1618-9_17

Download citation

Publish with us

Policies and ethics