Skip to main content

Abstract

Persistent luminescent materials have become an important class of multi-functional materials and have a broad application in many fields. The persistent luminescent materials have been mainly used as luminous materials. Besides, as for the photocatalysis, the persistent luminescent materials act as the light source for the photocatalysis in dark environment; as for sensing, the persistent luminescent materials use their temperature change and mechanoluminescence features to measure the environment temperature and pressure; the application of the persistent luminescent materials in biomedical study lies in the luminescent marker, tumor diagnostics and analysis, as well as photodynamic therapy of cancer; as for the application in solar energy, the persistent luminescent materials can be used in photoelectron nano-devices, fiber amplifier, and photovoltaic materials; the persistent luminescent materials can also be used in agriculture, as the light source for plant growth, and enhance the photosynthesis of the plants. Combining the published work with our research, this chapter will include: the basic concepts and history of persistent luminescent materials, the classification of the persistent luminescent materials, the luminescent mechanism and model, and the basic methods and conditions to realize the persistent luminescence, the applications of the persistent luminescent materials, and the prospects of the persistent luminescent materials in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luo F, Sun GM, Zheng AM, Lian SX, Liu YL, Feng XF, Chu YY (2012) Promising long-lasting phosphor material: a novel metal-organic framework showing intriguing luminescent performance. Dalton T 43: 13280.

    Google Scholar 

  2. Deng YY, Zhao DX, Chen X, Wang F, Song H, Shen DZ (2013) Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem Commum 49: 5751.

    Google Scholar 

  3. Feng HB, Zhang HR, Dong HW, Lei BF, Xiao Y, Zheng MT, Liu YL (2014) Luminescence properties of silk cocoon derived carbonaceous fluorescent nanoparticles/PVA hybrid film. Opt Mater 36: 1787.

    Google Scholar 

  4. Van den Eeckhout K, Smet PF, Poelman D (2010) Persistent luminescence in Eu2+-doped compounds: A review. Materials 3: 2536.

    Google Scholar 

  5. Van den Eeckhout K, Poelman D, Smet PF (2013) Persistent luminescence in non-Eu2+-doped compounds: A review. Materials 6: 2789.

    Google Scholar 

  6. Smet PF, Moreels I, Hens Z, Poelman D (2010) Luminescence in sulfides: A rich history and a bright future. Materials 3: 2834.

    Google Scholar 

  7. Smet PF, Botterman J, Van den Eeckhout K, Korthout K, Poelman D (2014) Persistent luminescence in nitride and oxynitride phosphors: A review. Opt Mater 36: 1913.

    Google Scholar 

  8. Zhuang YX, Katayama Y, Ueda J, Tanabe S (2014) A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors. Opt Mater 36: 1907.

    Google Scholar 

  9. Singh SK (2014) Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Adv 4: 58674.

    Google Scholar 

  10. Lastusaari M, Laamanen T, Malkamäki M, Eskola KO, Kotlov A, Carlson S, Welter E, Brito HF, Bettinelli M, Jungner H, Hölsä J (2012) The Bologna Stone: history’s first persistent luminescent material. Eur J Mineral 24: 885.

    Google Scholar 

  11. Brito HF, Hölsä J, Laamanen T, Lastusaari M, Malkamäki M, Rodrigues LCV (2012) Persistent luminescence mechanisms: human imagination at work. Opt Mater Express 2: 371.

    Google Scholar 

  12. Wang YH, Gong Y, Xu XH, Li YQ (2013) Recent progress in multicolor long persistent phosphors. J Lumin 133: 25.

    Google Scholar 

  13. Su Q, Li CY, Wang J (2014) Some interesting phenomena in the study of rare earth long lasting Phosphors. Opt Mater 36: 1894.

    Google Scholar 

  14. Xu XR, Su MZ (2004) Optical and luminescent materials. Chinese Chemical Industry Press.

    Google Scholar 

  15. Kang FW, Hu YH, Wu HY, Mu ZF, Ju GF, Fu CJ, Li NN (2012) Luminescence and red long afterglow investigation of Eu3+–Sm3+ Co-doped CaWO4 phosphor. J Lumin 132: 887.

    Google Scholar 

  16. Chang CK, Li W, Huang XJ, Wang ZY, Chen X, Qian X, Guo R, Ding YL, Mao D (2010) Photoluminescence and afterglow behavior of Eu2+, Dy3+ and Eu3+, Dy3+ in Sr3Al2O6 matrix. J Lumin 130: 347.

    Google Scholar 

  17. Pang R, Li CY, Shi LL, Su Q (2009) A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+. J Phys Chem Solids 70: 303.

    Google Scholar 

  18. Smet PF, Poelman D, Hehlen MP (2012) Focus issue introduction: persistent phosphors, Opt Mater Express 2: 452.

    Google Scholar 

  19. Harvey EN (1957) A history of luminescence from the earliest times until 1900. American Philosophical Society.

    Google Scholar 

  20. Hoogenstraaten W, Klasens H (1953) Some properties of zinc sulfide activated with copper and cobalt. J Electrochem Soc 100: 366.

    Google Scholar 

  21. Shionoya S, Yen WM, Hase T (2007) Phosphor handbook. CRC press.

    Google Scholar 

  22. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (1996) A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J Electrochem Soc 143: 2670.

    Google Scholar 

  23. Qiu Z, Zhou Y, Lu Zhang MA, Q. Ma (2007) Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research. Acta Mater 55: 2615.

    Google Scholar 

  24. Schweizer S, Henke B, U. Rogulis U, Yen WM (2007) Recombination processes in rare-earth doped MAl2O4 (M = Ca, Sr) persistent phosphors investigated by optically-detected magnetic resonance. Phys Stat Sol A 204: 677.

    Google Scholar 

  25. Lin Y, Tang Z, Zhang Z, Wang, X, Zhang J (2001) Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J Mater Sci Lett 20: 1505.

    Google Scholar 

  26. Fei Q, Chang C, Mao D (2005) Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+. J Alloy Compd 390: 133.

    Google Scholar 

  27. Jia DD, Jiang LH, Liu YL, Zhu J (1998) The luminescent properties of CaxSr1-xS: Bi, Tm, Cu and CaS: Eu. Chines J Lumin 19: 312.

    Google Scholar 

  28. Jia DD, Wu BQ, Jiang LH, Zhu J (2000) The luminescent properties of Ca0.9Sr0.1S: Bi3+, Tm3+. Chines J Lumin 21: 43.

    Google Scholar 

  29. Jia DD, Zhu J, Wu BQ (2000) Trapping processes in CaS: Eu2+, Tm3+. J Electrochem Soc 147: 386.

    Google Scholar 

  30. Xiao ZG, Luo XX (2005) Optical storage luminescent materials and their products (the second edition). Chinese Chemical Industry Press.

    Google Scholar 

  31. Guo CF, Chu BL, Xu J, Su Q (2004) Improving the stability of alkaline earth sulfide based phosphors by oxide coating. Chinese J Lumin 25: 449.

    Google Scholar 

  32. Palilla FC, Levine AK, M. R. Tomkus MR (1968) Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium. J Electrochem Soc 115: 642.

    Google Scholar 

  33. Aitasalo T, Durygin A, Holsa J, Lastusaari, M, Niittykoski J, Suchocki A (2004) Low temperature thermoluminescence properties of Eu2+ and R3+ doped CaAl2O4. J Alloy Compd 380: 4.

    Google Scholar 

  34. Sakai R, Katsumata T, Komuro S, Morikawa T (1999) Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals. J Lumin 85: 149.

    Google Scholar 

  35. Akiyama M, Xu C, Matsui H, Nonaka K, Watanabe T (2000) Photostimulated luminescence phenomenon of Sr4Al14O25: Eu, Dy using only visible lights. J Mater Sci Lett 19: 1163.

    Google Scholar 

  36. Zhang JY, Zhang ZT, Wang TM, Hao WC (2003) Preparation and characterization of a new long afterglow indigo phosphor Ca12Al14O33: Nd, Eu. Mater Lett 57: 4315.

    Google Scholar 

  37. Kodama N, Takahashi T, Yamaga M, Tanii Y, Qiu J, Hirao K (1999) Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals. Appl Phys Lett 75: 1715.

    Google Scholar 

  38. Jia D, Yen WM (2003) Enhanced VK+ center afterglow in MgAl2O4 by doping with Ce3+. J Lumin 101: 115.

    Google Scholar 

  39. Jia D, Wang XJ, Yen WM (2002) Electron traps in Tb3+-doped CaAl2O4. Chem Phys Lett 363: 241.

    Google Scholar 

  40. Smith AL (1949) Some new complex silicate phosphors containing calcium, magnesium, and beryllium. J Electrochem Soc 96: 287.

    Google Scholar 

  41. Lei BF, Liu YL, Liu J, Shi CS (2004) Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3. J Solid State Chem 177: 1333.

    Google Scholar 

  42. Liu YL, Lei BF, Shi CS (2005) Luminescent properties of a white afterglow phosphor CdSiO3: Dy3+. Chem Mater 17: 2108.

    Google Scholar 

  43. Ji HM, Xie GJ, Y. Lv Y, Lu HX (2007) A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7: Eu2+, Dy3+ long afterglow materials by sol-gel method. J Sol-Gel Sci Techn 44: 133.

    Google Scholar 

  44. Yamamoto H, Okamoto S, Kobayashi H (1997) Red luminescence in Pr3+-doped calcium titanates. Phys Stat Soc 160: 255.

    Google Scholar 

  45. Royce MR, Matsuda S, Tamaki H (1997) Red emitting long decay phosphors. US Patent 5650094A.

    Google Scholar 

  46. Lian SX, Jin JH, Su MZ (2001) The synthesis and luminescent properties of Ca1-xZnxTiO3: Pr3+, R+ (R+ = Li+, Na+, K+, Rb+, Cs+, Ag+). J Chin Soc Rare Earths 19: 602.

    Google Scholar 

  47. Fu J (2000) Orange and red emitting long-lasting phosphors MO: Eu3+(M = Ca, Sr, Ba). Electrochem Solid State Lett 3: 350.

    Google Scholar 

  48. Lin YN, Nan CW, Cai N, Zhou XS, Wang HF, Chen DP (2003) Anomalous afterglow from Y2O3-based phosphor. J Alloy Compd 36: 92.

    Google Scholar 

  49. Xie W, Wang YH, Zou CW, Quan J, Shao LX (2015) A red-emitting long-afterglow phosphor of Eu3+, Ho3+ co-doped Y2O3. J Alloy Compd 619: 244.

    Google Scholar 

  50. Murazaki Y, Arai K, Ichinomiya K (1999) A new long persistence red phosphor. Jpn Rare Earth 35: 41.

    Google Scholar 

  51. Lei BF, Liu YL, Zhang JW, Meng JX, Man SQ, Tan SZ (2010) Persistent luminescence in rare earth ion-doped gadolinium oxysulfide phosphors. J Alloy Compd 495: 247.

    Google Scholar 

  52. Zhang JW, Liu YL, Man SQ (2006) Afterglow phenomenon in Erbium and Titanium codoped Gd2O2S phosphors. J Lumin 117: 141.

    Google Scholar 

  53. Li W, Liu Y, Ai P (2010) Synthesis and luminescence properties of red long-lasting phosphor Y2O2S:Eu3+, Mg2+, Ti4+ nanoparticles. Mater Chem Phys 119: 52.

    Google Scholar 

  54. Song CY, Lei BF, Liu YL (2004) Long lasting phosphorescence of Eu3+ in La2O2S. Chinese J Inorg Chem 20: 89.

    Google Scholar 

  55. Zhang HR, Dong HW, Lei BF, Wang P, Li JF, Liu YL, Wang J, Xiao Y, Zheng MT, Meng JX (2014) Enhanced performance of Ca2Si5N8:Eu2+, Tm3+ reddish-orange afterglow phosphor by co-doping with Dy3+. Opt Mater 36: 1846.

    Google Scholar 

  56. Wang J, Zhang HR, Lei BF, Dong HW, Zhang HM, Liu YL, Lai NL, Fang Y, Chen ZJ (2014) Red persistent and photo-stimulated luminescence properties of SrCaSi5N8: Eu2+, Tm3+ solid solution. Opt Mater 36: 1855.

    Google Scholar 

  57. Rasmussen JC, Kwon S, Sevick-Muraca EM, Corrmier JN (2012) The role of lymphatics in cancer as assessed by near-infrared fluorescence imaging. Ann Biomed Eng 40: 408.

    Google Scholar 

  58. Chermont QM, Chanéac C, Seguin J, Pellé F, Maitrejean S, Jolivet JP, Gourier D, Bessodes M, Scherman D (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci USA 104: 9266.

    Google Scholar 

  59. Peng MY, Qiu JR, Zhang QY (2014) An introduction to the 2nd International Workshop on Persistent and Photostimulable Phosphors (IWPPP 2013). Opt Mater 36: 1769.

    Google Scholar 

  60. Li Y, Li YY, Sharafudeen K, Dong GP, Zhou SF, Ma ZJ, Peng MY, Qiu JR (2014) A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+, Ge4+ (M = La, Gd) as an example. J Mater Chem C 2: 2019.

    Google Scholar 

  61. Caratto V, Locardi F, Costa GA, Masini R, Fasoli M, Panzeri L, Martini M, Bottinelli E, Gianotti E, Miletto I (2014) NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: The effect of dopants. ACS Appl Mater Inter 6: 17346.

    Google Scholar 

  62. Chen DQ, Chen Y, Lu HW, Ji ZG (2014) A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg Chem 53: 8638.

    Google Scholar 

  63. Basavaraju N, Priolkar KR, Gourier D, Sharma SK, Bessiere A, Viana B (2015) The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al). Phys Chem Chem Phys 17: 1790.

    Google Scholar 

  64. Grinberg M (2002) Spectroscopic characterisation of disordered materials doped with chromium. Opt Mater 19: 37.

    Google Scholar 

  65. Bessiere A, Jacquart S, Priolkar K, Lecointre A, Viana B, Gourier D (2011) ZnGa2O4:Cr3+: A new red long lasting phosphor with high brightness. Opt Express 19: 10131.

    Google Scholar 

  66. Pan ZW, Lu YY, Liu F (2012) Sunlight activated long persistent luminescence in the near infrared from Cr3+-doped zinc gallogermanates. Nat Mater 11: 58.

    Google Scholar 

  67. Liu F, Yan WZ, Chuang YJ, Zhen ZP, Xie J, Pan ZW (2013) Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci Rep 3: 1554.

    Google Scholar 

  68. Abdukayum A, Chen JT, Zhao Q, Yan XP (2013) Functional near infrared-emitting Cr3+ Pr3+ co-doped zinc allogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135: 4125.

    Google Scholar 

  69. Wang LL, Hou ZY, Quan ZW, Lian HZ, Yang PP, Lin J (2009) Preparation and luminescence properties of Mn2+-doped ZnGa2O4 nanofibers via electrospinning process. Mater Res Bull 44: 1978.

    Google Scholar 

  70. Yu NY, Liu F, Li XF, Pan ZW (2009) Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer. Appl Phys Lett 95: 231110.

    Google Scholar 

  71. Zhang XY, Lu LP, Bai ZH (2005) Rare earths luminescent materials. National Defence Industry Press of China.

    Google Scholar 

  72. Jia WJ, Yuan HB, Lu LZ, Liu HM, Yen WM (1998) Phosphorescent dynamics SrAl2O4:Eu2+, Dy3+ single crystal fibers. J Lumin 76-77: 424.

    Google Scholar 

  73. Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Mercier TL (2005) Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+. Chem Mater 17: 3904.

    Google Scholar 

  74. Zhang RJ, Ning GL (2003) The mechanism of long afterglow phosphors MAl2O4: Eu2+, RE3+. Optoelectron Techn (in Chinese) 23: 30.

    Google Scholar 

  75. Liu YL, Ding H (2001) Advances in long lasting phosphorescent materials. Chinese J Inorg Chem 17: 181.

    Google Scholar 

  76. Qiu JR, Hirao K (1998) Long lasting phosphorescence in Eu2+-doped calcium aluminoborate glasses. Solid State Commun 106: 795.

    Google Scholar 

  77. Zhang TZ, Su Q, Wang SB (1999) Luminescent properties of MAl2O4: Eu2+, Re3+, Chinese J Lumin 20: 170.

    Google Scholar 

  78. Aitasalo T, Holsa J, Jungner H, Lastusaari M, Niittykoski J (2001) Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates. J Lumin 94-95: 59.

    Google Scholar 

  79. Lin Y, Zhang ZL, Zhang ZT, Nan CW (2003) Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors. J. Eur Ceram Soc 23: 175.

    Google Scholar 

  80. Alvani AAS, Moztarzadeh F, Sarabi AA (2005) Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8. J Lumin 114: 131.

    Google Scholar 

  81. Pan W, Ning GL, Zhang X, Wang J, Lin Y, Ye JW (2008) Enhanced luminescent properties of long-persistent Sr2MgSi2O7: Eu2+, Dy3+ phosphor prepared by the co-precipitation method. J Lumin 128: 1975.

    Google Scholar 

  82. Lin YH, Tang ZL, Zhang ZT, Nan CW (2003) Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R = Ca, Sr, Ba) phosphors. J Alloy Compd 348: 76.

    Google Scholar 

  83. Wang XS, Lin YH, Zhang ZT (2002) Eu and Dy co-doped Sr2MgSi2O7-based long afterglow photoluminescent materials. J Chin Ceram Soc 30: 216.

    Google Scholar 

  84. Dorenbos P (2005) Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+, Dy3+. Phys Status Solidi B 242: R7.

    Google Scholar 

  85. Qi ZM, Shi CS, Liu M, Zhou DF, Luo XX, Zhang J, Xie YN (2004) The valence of rare earth ions in R2MgSi2O7:Eu, Dy (R = Ca, Sr) long-afterglow phosphors. Phys Status Solidi A 201: 3109.

    Google Scholar 

  86. Zhang GB, Qi ZM, Zhou HJ, Fu YB, Huo TL, Luo XX, Shi CS (2005) Photoluminescence of (Eu2+, Dy3+) co-doped silicate long lasting phosphors. J Electron Spectrosc Relat Phenom 144-147: 861.

    Google Scholar 

  87. Setlur AA, Srivastava AM, Pham HL, Hannah ME, Hannek U (2008) Charge creation, trapping, and long phosphorescence in Sr2MgSi2O7: Eu2+, RE3+. J Appl Phys 103: 053513.

    Google Scholar 

  88. Liu B, Shi CS, Yin M, Dong L, Xia ZG (2005) The trap states in the Sr2MgSi2O7 and (Sr, Ca)MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+. J Alloy Compd 387: 65.

    Google Scholar 

  89. Wang XJ, Jia DD, Yen WM (2003) Mn2+ activated green, yellow, and red long persistent phosphors. J Lumin 102-103: 34.

    Google Scholar 

  90. Lei BF, Liu YL, Ye ZR, Shi CS (2004) Luminescence properties of CdSiO3:Mn2+ phosphor. J Lumin 109: 215.

    Google Scholar 

  91. Abe S, Uematsu K, Toda K, Sato M (2006) Luminescent properties of red long persistence phosphors, BaMg2Si2O7:Eu2+, Mn2+. J Alloy Compd 408-412: 911.

    Google Scholar 

  92. Ye S, Zhang J, Zhang X, Lu S, Ren X, Wang XJ (2007) Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer. J Appl Phys 101: 063545.

    Google Scholar 

  93. Aitasalo T, Hietikko A, Hreniak D, Holsa J, Lastusaari M, Niittykoski J, Strek W (2008) Luminescence properties of BaMg2Si2O7:Eu2+, Mn2+. J Alloy Compd 451: 229.

    Google Scholar 

  94. Lin L, Yin M, Shi, CS, Zhang WP (2008) Luminescence properties of a new red long-lasting phosphor: Mg2SiO4: Dy3+, Mn2+. J Alloy Compd 455: 327.

    Google Scholar 

  95. Wang XX, Zhang ZT, Tang ZL, Lin YH (2003) Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor. Mater Chem Phys 80: 1.

    Google Scholar 

  96. Yamamoto H, Matsuzawa H (1997) Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+. J Lumin 72: 287.

    Google Scholar 

  97. Jia DD, Wang XJ, Jia W, Yen WM (2007) Trapping processes of 5d electrons in Ce3+ doped SrAl2O4. J Lumin 122-123: 311.

    Google Scholar 

  98. Jia DD, Jia WY, Jia Y (2007) Long persistent alkali-earth silicate phosphors doped with Eu2+, Nd3+. J Appl Phys 101: 023520.

    Google Scholar 

  99. Su Q, Li CY, Wang J, Li J, Zhang YL, Guo CF, Lu YH (2005) Electron trapping materials doped with Rare Earth ions. Chinese J Lumin 26: 143.

    Google Scholar 

  100. Li CY, Su Q, Qiu JR (2003) Development of Long-lasting phosphorescent materials doped by RE ions. Chinese J Lumin 24: 19.

    Google Scholar 

  101. Lei BF, Liu YL, Ye ZR, Shi CS (2003) Multi-color long-lasting phosphorescence of rare earth ions in CdSiO3 matrix. Chinese Science Bull 48: 2434.

    Google Scholar 

  102. Lei BF, Liu YL, ZYe ZR, Shi CS (2004) Upconversion of thulium-doped yttrium oxysulfide phosphor and its long-lasting phosphorescence. Electrochem Solid State Lett 7: G225.

    Google Scholar 

  103. Lei BF, Liu YL, Tang GB, Ye ZR, Shi CS (2004) Spectra and long-lasting properties of Sm3+-doped yttrium oxysulfide phosphor. Mater Chem Phys 87: 227.

    Google Scholar 

  104. Lei BF, Liu YL, Liu J, Tang GB, Ye ZR, Shi CS (2004) Long-lasting properties of Rare Earth-doped Y2O2S phosphor. J Rare Earth Soc 22: 63.

    Google Scholar 

  105. Liu YL, Kuang JY, Lei BF, Shi CS (2005) Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors. J Mater Chem 15: 4025.

    Google Scholar 

  106. Liu ZW, Liu YL (2005) Afterglow energy transfer in Cd3Al2Ge3O12: Dy. Phys Stat Sol A 202: 1814.

    Google Scholar 

  107. Liu ZW, Liu YL, Zhang JX, Rong JH, Huang LH, Yuan DS (2005) Long-lasting phosphorescence in Pr3+ and Li+ co-doped CaZrO3. Optics Commun 251: 388.

    Google Scholar 

  108. Liu ZW, Liu YL (2005) Synthesis and luminescent properties of a new green afterglow phosphor CaSnO3:Tb. Mater Chem Phys 93: 129.

    Google Scholar 

  109. Kuang JY, Liu YL, Lei BF (2006) Effect of RE3+ as a co-dopant in long-lasting phosphorescence CdSiO3:Mn2+ (RE = Y, La, Gd, Lu). J Lumin 118: 33.

    Google Scholar 

  110. Liu YL, Lei BF, Kuang JY, Shi CS, Meng JX, Man SQ, Tan SZ, Xiao Y, Yuan DS, Huang LH, Zhang JX (2009) Advances in Long Lasting Phosphorescent Materials. Chinese J Inorg Chem 25: 1323.

    Google Scholar 

  111. Ko JH (2003) Process for providing a titanium dioxide layer on material that contains a light absorbing substance and the product so formed. USA Patent US6569386.

    Google Scholar 

  112. Zhang JY, Pan F, Hao WC, Qi G, Wang TM (2004) Light-storing photocatalyst. Appl Phys Lett 85: 5778.

    Google Scholar 

  113. Aizawa H, Katsumata T, Takahashi J, Matsunaga K, Komuro S, Morikawa T, Toba E (2003) Long afterglow phosphorescent sensor materials for fiber-optic thermometer. Rev Sci Instrum 74: 1344.

    Google Scholar 

  114. Jia Y, Yei M, Jia WJ (2006) Stress-induced mechanoluminescence in SrAl2O4:Eu2+, Dy3+. Opt Mater 28: 974.

    Google Scholar 

  115. Wu BY, Wang HF, Chen JT, Yan XP (2011) Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J Am Chem Soc 133: 686.

    Google Scholar 

  116. Geng BY, Ma JZ, Zhan FM (2009) A solution chemistry approach for one-dimensional needle-like SrAl2O4 nanostructures with Ln (Ce3+, Eu2+ and Tb3+) as activator/dopant. J Alloy Compd 473: 530.

    Google Scholar 

  117. Cheng BC, Fang LT, Zhang ZD, Xiao YH, Lei SJ (2011) BaAl2O4:Eu2+, Dy3+ nanotube synthesis by heating conversion of homogeneous coprecipitates and afterglow characteristics. J Phys Chem C 115: 1708.

    Google Scholar 

  118. Guo CF, Luan L, Huang DX, Su Q, Lv YH (2007) Study on the stability of phosphor SrAl2O4:Eu2+, Dy3+ in water and method to improve its moisture resistance. Mater Chem Phys 106: 268.

    Google Scholar 

  119. Mishra SB, Mishra AK, Revaprasadu N, Hillie KT, Steyn WJV, Coetsee E, Swart HC (2009) Strontium aluminate/polymer composites: morphology luminescent properties, and durability. J Appl Polym Sci 112: 3347.

    Google Scholar 

  120. Mishra SB, Mishra AK, Luyt AS, Revaprasadu N, Hillie KT, Steyn WJ, Coetsee E, Swart HC (2010) Ethyl vinyl acetate copolymer-SrAl2O4:Eu2+, Dy3+ and Sr4Al14O25: Eu2+, Dy3+ phosphor-based composites: preparation and material properties. J Appl Polym Sci 115: 579.

    Google Scholar 

  121. Ben DB, Swart HC, Luyt AS, Coetzee E, Dejene FB (2010) Properties of green SrAl2O4 phosphor in LDPE and PMMA polymers. J Appl Polym Sci 117: 2635.

    Google Scholar 

  122. Sooraj HN, Prabhakara RY, Buddhudu Y (2001) Luminescence spectral of Eu3+ doped GeO2-PbO-Bi2O3 glasses. Mater Res Bull 36: 1813.

    Google Scholar 

  123. Qiu JR, Kojima K, Miura, Mitsuyu T, Hirao K (1999) Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass. Opt Lett 24: 786.

    Google Scholar 

  124. Qiu JR, Kawasaki M, Tanaka K, Shimizugawa Y, Hirao K (1998) Phenomenon and mechanism of long lasting phosphorescence in Eu2+-doped calcium aluminoborate glasses. Phys Chem Solids 59: 1521.

    Google Scholar 

  125. Yamazaki M, Yamamoto Y, Nagahama S, Sawanobori N, Mizuguchi M, Hosono H (1998) Long luminescent glass: Tb3+ activated ZnO-B2O3-SiO2 glass. J Non-Cryst Solids 241: 71.

    Google Scholar 

  126. Lin YH, Zhang ZT, Chen QM, Tang ZL, Gong JH (2000) A study on preparation of long afterglow photoluminescence glass and its properties. Mater Sci Technol (in Chinese) 8: 1.

    Google Scholar 

  127. Chen QM, Lin YH, Zhang ZT, Tang ZL (2001) Studies on preparation of long afterglow luminescent glass and its properties. Funct Mater (in Chinese) 32: 208.

    Google Scholar 

  128. Lin YH, Chen QM, Zhang ZT, Tang ZL (2002) Influence of sintering conditions on the optical properties of long afterglow luminescent glass. J Inorg Mater (in Chinese) 15: 982.

    Google Scholar 

  129. Li CY, Wang SB, Su J (2002) Long-lasting Phosphorescence in Eu2+ , Dy3+ Co-doped Strontium Aluminoborate Glass-ceramic. Chinese J Lumin 23: 233.

    Google Scholar 

  130. Su Q, Li CY, Lv YH (2001) Manufacturing method of Rare earth yellow-green long afterglow glass. China Patent 1305967.

    Google Scholar 

  131. Su Q, Li CY, Lv YH (2001) Manufacturing method of red, green, yellow, long afterglow from zinc borosilicate glass. China Patent 1317456A.

    Google Scholar 

  132. Li CY, Su Q, Wang SB (2002) Multi-color long-lasting phosphorescence in Mn2+- doped ZnO-B2O3-SiO2 glass ceramics. Mater Res Bull 37: 1443.

    Google Scholar 

  133. Huang LH, Chen WX, Liu YL (2006) Preparation and luminescent properties studies of strontium aluminoborate luminescent glasses. Funct Mater (in Chinese) 37: 861.

    Google Scholar 

  134. Xiao LY, Xiao Q, Liu YL, Ai PF, Li YD, Wang HJ (2010) A transparent sur-face-crystallized Eu2+, Dy3+ codoped strontium aluminate long-lasting phosphorescent glass-ceramic. J Alloy Compd 495: 72.

    Google Scholar 

  135. Zhang XY, Guo Y, Bai CH, Wang XR, Cao ZF (2002) Preparation of SrAl2O4:Eu2+, Dy3+, photoluminescence enamel coating. Mater Sci Technol (in Chinese) 3: 314.

    Google Scholar 

  136. Maldiney T, Richard C, Seguin J, Wattier N, Bessodes M, Scherman D (2011) Effect of core diameter, surface, coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 2: 854.

    Google Scholar 

  137. Maldiney T, Byk G, Wattier N, Seguin J, Khandadash R, Bessodes M, Richard C, Scherman D (2012) Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. Int J Pharm 423: 102.

    Google Scholar 

  138. Maldiney M, Kaikkonen MU, Seguin J, Chermont QM, Bessodes M, Airenne KJ, Herttuala SY, Scherman D, Richard C (2012) In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Bioconjugate Chem 23: 472.

    Google Scholar 

  139. Takayama T, Katsumata T, Komuro S, Morikawa T (2005) Growth and characteristics of a new long afterglow phosphorescent yttrium tantalite crystal. J Cryst Growth 275: 2013.

    Google Scholar 

  140. Katsumata T, Kohno Y, Kubo H, Komuro S, Morikawa T (2005) Low temperature fluorescence thermometer application of long afterglow phosphorescent SrAl12O19:Eu2+, Dy3+ crystals. Rev Sci Instrum 76: 084901.

    Google Scholar 

  141. Akiyama M, Nishikubo K, Nonada K (2003) Intense visible light emission from stress-activated SrMgAl6O11:Eu. Appl Phys Lett 83: 650.

    Google Scholar 

  142. Chandra VK, Chandra BP (2012) Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals. J Lumin 132: 858.

    Google Scholar 

  143. Fontenot RS, Hollerman WA, Bhat KN, Aggarwal MD (2012) Effects of Added Uranium on the Triboluminescent Properties of Europium Dibenzoylmethide Triethylammonium. J Lumin 134: 477.

    Google Scholar 

  144. Jha P, Chandra BP (2014) Survey of the literature on mechanoluminescence from 1605 to 2013. Lumin 29: 977.

    Google Scholar 

  145. Li CS, Xu CN, Zhang L, Yamada H, Imai Y, Wang WX (2008) Dynamic visualization of stress distribution on metal by mechanoluminescence images. J Visual-Japan 11: 329.

    Google Scholar 

  146. Wang WX, Imai Y, Xu CN, Matsubara T, Takao Y (2011) A new smart damage sensor using mechanoluminescence material. Mater Forum 675-677: 1081.

    Google Scholar 

  147. Kim WJ, Lee JM, Kim JS, Lee CJ (2012) Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material, Smart structures and systems 10: 547.

    Google Scholar 

  148. Yang R, Yang YX, Hu DD, Cui B, Tang ZX (2001) Origins and mechanisms of the triboluminescence. Chem Res Appl (in Chinese) 13: 10.

    Google Scholar 

  149. Sun ZX, Liu YL, Huang LH, Chen WX (2004) Study of preparation and photocatalytic properties of new type complex material CaAl2O4: Eu2+, Dy3+ coated by TiO2. Huaxue Jiancai (in Chinese) 6: 46.

    Google Scholar 

  150. Zhong JB, Wang JL, Tao L, Gong MC, Liu ZM, Chen YQ (2007) Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: preparation and photocatalytic behavior of TiO2/Sr2CeO4. J Hazard Mater 140: 200.

    Google Scholar 

  151. Zhong JB, Ma D, He XY, Li JZ, Chen YQ (2009) Sol-gel preparation and photocatalytic performance of TiO2/SrAl2O4: Eu2+, Dy3+ toward the oxidation of gaseous benzene. J Sol-gel Sci Techn 52: 140.

    Google Scholar 

  152. Li HH, Yin S, Wang YH, Sato T (2012) Persistent fluorescence-assisted TiO2-xNy-based photocatalyst for gaseous acetaldehyde degradation. Environ Sci Technol 46: 7741.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingliang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Liu, Y., Lei, B. (2016). Persistent Luminescent Materials. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_6

Download citation

Publish with us

Policies and ethics