Skip to main content

Cadmium Free Quantum Dots: Principal Attractions, Properties, and Applications

  • Chapter
  • First Online:
Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Abstract

For the past thirty years, interest on semiconductor nanocrystals from versatile systems of II–VI Quantum Dots (QDs) has been actively grown depending upon their application to light-emitting diodes (Gaponik in Mater Chem 10:2163–2166, 2000 [1]), lasers (Artemyev et al. in Nano Lett 1:309–314, 2001 [2]), and biomedical research (Bruchez et al. in Science 281:2013–2016, 1998 [3]; Chan and Nie in Science 281:2016–2018, 1998 [4]; Michalet et al. in Science 307:538–544, 2005 [5]). However, the presence of highly toxic cadmium limits the application range particularly in the lighting and biological fields. To lessen the toxicity issue, various approaches were developed, such as overcoating the toxic core by non-toxic ZnS shell preventing the leakage of cadmium ions (Chou and Chan in Nat Nanotechnol 7(7):416–417, 2012 [6]; Ghaderi et al. in J Drug Targeting 19:475–486, 2011 [7]; Winnik and Maysinger in Acc Chem Res 46:672–680, 2012 [8]). Despite this action, II–VI QDs still remain unsafe due to initiated response to UV irradiation- or oxidation-resulted cadmium release through oxidized surface sites (Derfus et al. in Nano Lett 4:11–18, 2004 [9]). Therefore, the research focus was shifted to so-called cadmium free QDs, such as ZnSe, InP, and CuInS2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaponik N. P., Talapin D. V., Rogach A. L., Eychmuller A. (2000) Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications. Materials Chemistry 10: 2163–2166

    Google Scholar 

  2. Artemyev M.V., Woggon U., Wannemacher R., Jaschinski H., Langbein W. (2001) Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission. Nano Letters 1: 309–314

    Google Scholar 

  3. Bruchez Jr.M., Moronne M., Gin P., Weiss S., Alivisatos A.P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2016

    Google Scholar 

  4. Chan W.C.W., Nie S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281: 2016–2018

    Google Scholar 

  5. Michalet X., Pinaud F. F., Bentolila L. A., Tsay J.M., Doose S., Li J.j., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538–544

    Google Scholar 

  6. Chou L.Y.T., Chan W.C.W. (2012) Nanotoxicology No Signs of Illness. Nat. Nanotechnol 7(7): 416-417

    Google Scholar 

  7. Ghaderi S., Ramesh B., Seifalian A.M. (2011) Fluorescence Nanoparticles Quatnum Dots as Drug Delivery System and Their Toxicity: A Review. J. Drug Targeting 19: 475-486

    Google Scholar 

  8. Winnik F.M., Maysinger D. (2012) Quantum Dot Cytotoxicity and Ways To Reduce It. Acc. Chem. Res. 46: 672-680

    Google Scholar 

  9. Derfus M., Chan W.C.W., Bhatia S. N. (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 4: 11–18

    Google Scholar 

  10. Lesnyak V, Gaponik N, Eychmüller A (2013) Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev 42: 2905-2929

    Google Scholar 

  11. Gessner GS (1930) The Luminescence of Zinc Sulphide Under the Action of Alpha, Beta and Gamma-Rays. Phys Rev 36: 207-213

    Google Scholar 

  12. Fang X, Zhai T, Gautam UK, Lib L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: From synthesis to applications. Progress in Materials Science 56: 175-287

    Google Scholar 

  13. Hines MA, Guyot-Sionnest P (1998) Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals. J Phys Chem B 102: 19

    Google Scholar 

  14. Cozzoli PD, Manna L, Curri ML, Kudera S, Giannini C, Striccoli M, Agostiano A (2005) Shape and phase control of colloidal ZnSe nanocrystals. Chem Mater 17: 1296–1306

    Google Scholar 

  15. Liu XD, Ma JM, Peng P, Meng WJ (2010) One-Pot Hydrothermal Synthesis of ZnSe Hollow Nanospheres from an Ionic Liquid Precursor. Langmuir 26: 9963-9973

    Google Scholar 

  16. Chin PTK, Stouwdam JW, Janssen RAJ (2009) Highly Luminescent Ultra narrow Mn Doped ZnSe Nanowires. Nano Lett 9: 745-750

    Google Scholar 

  17. Yang Y, Chen O, Angerhofer A, Cao YC (2006) Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals. J Am Chem Soc 128: 12428-12429

    Google Scholar 

  18. Zeng R, Zhang T, Dai G, Zou B (2011) Highly Emissive, Color-Tunable, Phosphine-Free ZnSe:Mn/ZnS Core/Shell and ZnSe:MnS Shell-Alloyed Doped Nanocrystals. J Phys Chem C 115: 3005-3010

    Google Scholar 

  19. Srivastava BB, Jana S, Karan N S, Paria S, Jana NR, Sarma DD, Pradhan N (2010) Highly Luminescent Mn-Doped ZnS Nanocrystals: Gram-Scale Synthesis. J Phys Chem Lett 1: 1454-1458

    Google Scholar 

  20. Wang C, Wehrenberg BL, Woo CY, Guyot-Sionnest P (2004) Light Emission and Amplification in Charged CdSe Quantum Dots. J Phys Chem B 108: 9027

    Google Scholar 

  21. Wang G, Peng Q, LI Y (2011) Lanthanide-Doped Nanocrystals : Synthesis Optical-Magnetic Properties, and Applications. Acc Chem Res 44: 322-332

    Google Scholar 

  22. Karan NS, Sarkar S, Sarma DD, Kundu P, Ravishankar N, Pradhan N (2011) Thermally Controlled Cyclic Insertion/Ejection of Dopant Ions and Reversible Zinc blende/Wurtzite Phase Changes in ZnS Nanostructures. J Am Chem Soc 133: 1666-1669

    Google Scholar 

  23. Pradhan N, Goorskey D, Thessing J, Peng X (2005) An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J Am Chem Soc 127: 17586-17587

    Google Scholar 

  24. Pradhan N, Peng X (2007) Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry. J Am Chem Soc 129: 3339-3347

    Google Scholar 

  25. Norris DJ, Efros AL, Erwin SC (2008) Doped Nanocrystals. Science 319: 1776-1779

    Google Scholar 

  26. Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Lett 1: 3-7

    Google Scholar 

  27. Jana S, Srivastava BB, Acharya S, Santra PK, Jana NR, Sarma DD, Pradhan N (2010) Prevention of Photooxidation in Blue-Green Emitting Cu Doped ZnSe Nanocrystals. Chem Commun 46: 2853-2855

    Google Scholar 

  28. Brovelli S, Galland C, Viswanatha R, Klimov VI (2012) Tuning Radiative Recombination in Cu-Doped Nanocrystals via Electrochemical Control of Surface Trapping. Nano Lett 12: 4372-4379

    Google Scholar 

  29. Xie R, Li Y, Jiang L, Zhang X (2014) A facile and green strategy to fabricate luminescent ZnSe:Fe nanocrystals and their structural and optical properties. Journal of Alloys and Compounds 613: 213-218

    Google Scholar 

  30. Yadav K, Dwivedi Y, Jaggi N (2015) Structural and optical properties of Ni doped ZnSe nanoparticles. Journal of Luminescence 158: 181-187

    Google Scholar 

  31. Xie R, Li L, Li Y, Liu L, Xiao D, Zhu J (2011) ZnSe:Fe Semiconductor Nanocrystals: Synthesis, Surface Capping, and Optical Properties. Journal of Alloys and Compounds 509: 3314-3318

    Google Scholar 

  32. Das S, Mandal KC (2013) Optical down-conversion in doped ZnSe:Tb3+ nanocrystals. Nanoscale 5: 913

    Google Scholar 

  33. Bhargava R, Gallagher R (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72: 416-419

    Google Scholar 

  34. Pradhan N, Sarma DD (2011) Advances in Light-Emitting Doped Semiconductor Nanocrystals. J Phys Chem Lett 2: 2818-2826

    Google Scholar 

  35. Liu S, Su X (2013) The synthesis and application of doped semiconductor nanocrystals. Anal Methods 5: 4541-4548

    Google Scholar 

  36. Zhou R, Li M, Wang S, Wu P, Wu L, X Hou (2014) Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. Nanoscale 6: 14319

    Google Scholar 

  37. Zhu D, Chen Y, Jiang L, Geng J, Zhang J, Zhu JJ (2011) Manganese-Doped ZnSe Quantum Dots as a Probe for Time-Resolved Fluorescence Detection of 5-Fluorouracil. Anal Chem 83: 9076-9081

    Google Scholar 

  38. Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21: 1022-1028

    Google Scholar 

  39. Dalpian GM, Chelikowsky JR (2006) Self-Purification in Semiconductor Nanocrystals. Phys Rev Lett 96: 226802

    Google Scholar 

  40. Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Doping semiconductor nanocrystals. Nature 436: 91

    Google Scholar 

  41. Wang Y, Herron N, Moller K, Bein T (1991) 3-dimensionally confined diluted magnetic semiconductor clusters: Zn1–-xMnxS. Solid State Commun 77: 33-38

    Google Scholar 

  42. Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72: 416-419

    Google Scholar 

  43. Levy L, Hochepied JF, Pileni MP (1996) Control of the size and composition of three dimensionally diluted magnetic semiconductor clusters. J Phys Chem 100: 18322-18326

    Google Scholar 

  44. Gonzalez ES, Roces L, Garcia-Granda S, Fernandez-Arguelles MT, Costa-Fernandez JM, Sanz-Medel A (2013) Influence of Mn2 + concentration on Mn2 + -doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties. Nanoscale 5, 9156-9161

    Google Scholar 

  45. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2000) Luminescence of nanocrystalline ZnSe:Mn2 + . Phys. Chem Chem Phys 2: 5445-5448

    Google Scholar 

  46. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54: 11169-11186

    Google Scholar 

  47. Chelikowsky JR (2006) The Role of Self-Purification and the Electronic Structure of Magnetically Doped Semiconductor Nanocrystals. Phase Transitions 79: 739-753

    Google Scholar 

  48. Nag A, Chakraborty S, Sarma DD (2008) To Dope Mn2+ in a Semiconducting Nanocrystal. J Am Chem Soc 130: 10605-10611

    Google Scholar 

  49. Gul S, Cooper JK, Corrado C, Vollbrecht B, Bridges F, Guo J, Zhang JZ (2011) Synthesis, Optical and Structural Properties, and Charge Carrier Dynamics of Cu-Doped ZnSe Nanocrystals. J Phys Chem C 115: 20864-20875

    Google Scholar 

  50. Srivastava BB, Jana S, Pradhan N (2011) Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights. J Am Chem Soc 133: 1007-1015

    Google Scholar 

  51. Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sarma DD (2005) Emission Properties of Manganese-Doped ZnS Nanocrystals. J Phys Chem B 109: 1663-1668

    Google Scholar 

  52. Panda SK, Hickey SG, Demir HV, Eychmller A (2011) Bright White-Light Emitting Manganese and Copper Co-Doped ZnSe Quantum Dots. Angew Chem 123: 4524-4528

    Google Scholar 

  53. Sharma, VK, Guzelturk B, Erdem T, Kelestemur Y, Demir HV (2014) Tunable White-Light-Emitting Mn-Doped ZnSe Nanocrystals. ACS Appl Mater Interfaces 6: 3654 − 3660

    Google Scholar 

  54. Chibli H, Carlina L, Park S, Dimitrijevic NM, Nadeau JL (2011) Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 3: 2552-2559

    Google Scholar 

  55. Bharali DJ, Lucey DW, Jayakumar HH, Pudavar E, Prasad PN (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Journal of the American Chemical Society 127: 11364–11371

    Google Scholar 

  56. Yong KT, Ding HI, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3: 502-510

    Google Scholar 

  57. Langof L, Ehrenfreund E, Lifshitz E, Micic OI, Nozik AJ (2002) Continuous-wave and time-resolved optically detected magnetic resonance studies of nonetched/etched InP nanocrystals. Journal of Physical Chemistry B 106: 1606–1612

    Google Scholar 

  58. Thuy UTD, Reiss P, Liem NQ (2010) Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl Phys Lett 97: 193104

    Google Scholar 

  59. Mushonga P, Onani MO, Madiehe AM, Meyer M (2012) Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications. Journal of Nanomaterials 2012: 869284

    Google Scholar 

  60. Reiss P (2007) ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems. New Journal of Chemistry 31: 1843–1852

    Google Scholar 

  61. Kwon BH, Jang DS, Kim HK, Jeon DY (2013) Controlled Growth of Quantum Dots and Their Application as Wavelength Converters for LEDs. Controlled Nanofabrication: Advances and Applications, Edited by Ru-Shi Liu Copyright © Pan Stanford Publishing Pte. Ltd. ISBN 978-981-4316-87-3 (Hardcover), 978-981-4364-51-5 (eBook)

    Google Scholar 

  62. Fan F, Ren J (2012) Gas-liquid phase synthesis of highly luminescent InP/ZnS core/shell quantum dots using zinc phosphide as a new phosphorus source. J Mater Chem 22: 1794-1799

    Google Scholar 

  63. Kim K, Jeong S, Woo JY, Han C-S (2012) Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs. Nanotechnology 23: 065602

    Google Scholar 

  64. Kim T, Kim SW, Kang M, Kim S-W (2012) Large-Scale Synthesis of InP/ZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller. J Phys Chem Lett 3: 214-218

    Google Scholar 

  65. Micic OI, Curtis JC, Jones KM, Sprague JR, Nozik AJ (1994) Synthesis and Characterization of InP Quantum Dots. J Phys Chem 98: 4966-4969

    Google Scholar 

  66. Mushtaq, Daniels S, Pickett N: Preparation of Nanoparticle Material. US Patent 7,588,828 B2, September 10, (2007)

    Google Scholar 

  67. www.nanocotechnologies.com

  68. Hussain S, Won N, Nam J, Bang J, Chung H, Kim S (2009) One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. Chem Phys Chem 10: 1466-1470

    Google Scholar 

  69. Yang X, Zhao D, Leck KS, Tan ST, Tang YX, Zhao J, Demir HV, Sun XW (2012) Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes. Adv Mater 24: 4180-4185

    Google Scholar 

  70. Anc MJ, Pickett NL, Gresty NC, Harris JA, Mishra KC (2013) Progress in Non-Cd Quantum Dot Development for Lighting Applications. ECS Journal of Solid State Science and Technology 2: R3071-R3082

    Google Scholar 

  71. Pickett N, Daniels S, O’Brien P: Nanoparticles. US Patent 7,867,557 B2, January 11, (2006)

    Google Scholar 

  72. Talapin DV, Gaponik N, Borchert H, Rogach AL, Haase M, Weller H (2002) Etching of Colloidal InP Nanocrystals with Fluorides: Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency. J Phys Chem B 106: 12659-12663

    Google Scholar 

  73. Nag A, Kovalenko MV, Lee J-S, Liu W, Spokoyny B, Talapin DV (2011) Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS 2-3 ,OH-, and NH2- as Surface Ligands. J Am Chem Soc 133: 10612–10620

    Google Scholar 

  74. Liu W, Lee J-S, Talapin DV (2013) III-V Nanocrystals Capped with Molecular Metal Chalcogenide Ligands: High Electron Mobility and Ambipolar Photoresponse. J Am Chem Soc 135: 1349-1357

    Google Scholar 

  75. Xu S, Ziegler J, Nann T (2008) Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mater Chem 18: 2653-2656

    Google Scholar 

  76. Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG (2005) Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. Journal of the American Chemical Society 127: 10526–10532

    Google Scholar 

  77. Gerbec JA, Magana D, Washington A, Strouse GF (2005) Microwave-enhanced reaction rates for nanoparticle synthesis. Journal of the American Chemical Society 127: 15791–15800

    Google Scholar 

  78. Somaskandan K, Tsoi GM, Wenger LE, Brock SL (2005) Isovalent doping strategy for manganese introduction into III-V diluted magnetic semiconductor nanoparticles: InP:Mn. Chemistry of Materials 17: 1190–1198

    Google Scholar 

  79. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U (2011) Heavily doped semiconductor nanocrystal quantum dots. Science 332: 77–81

    Google Scholar 

  80. Sahoo Y, Poddar P, Srikanth H, Lucey DW, Prasad PN (2005) Chemically fabricated magnetic quantum dots of InP:Mn. Journal of Physical Chemistry B 109: 15221–15225

    Google Scholar 

  81. Xie R, Peng X (2009) Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and colortunable NIR emitters. J Am Chem Soc 131: 10645–10651

    Google Scholar 

  82. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281: 2016–2018

    Google Scholar 

  83. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22: 47–52

    Google Scholar 

  84. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4: 435–446

    Google Scholar 

  85. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16: 63–72

    Google Scholar 

  86. Smith AM, Wen MM, Nie S (2010) Imaging dynamic cellular events with quantum dots - the bright future. Biochemist 32:12–17

    Google Scholar 

  87. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6: 925–953

    Google Scholar 

  88. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP,Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15: 79–86

    Google Scholar 

  89. Liu WH, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi MG (2007) Compact cysteine-coated CdSe (ZnCdS) quantum dots for in vivo applications. J Am Chem Soc 129: 14530–14531

    Google Scholar 

  90. Liang GX, Gu MM, Zhang JR, Zhu JJ (2009) Preparation and bioapplication of high-quality, water soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots. Nanotechnology 20: 415103

    Google Scholar 

  91. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnology 25: 1165-1170

    Google Scholar 

  92. Liu XF, Gao Y, Wang XM, Wu SJ, Tang ZY (2011) Preparation of stable, water-soluble, highly luminescence quantum dots with small hydrodynamic sizes. J Nanoscience Nanotechnology 11: 1941–1949

    Google Scholar 

  93. Kim HK, Han JY, Kang DS, Kim SW, Jang DS, Suh MW, Kirakosyan A, Jeon DY (2011) Characteristics of CuInS2/ZnS Quantum Dots and Its Application on LED. J Cryst Growth 236: 90-93

    Google Scholar 

  94. Nam D, Song W, Yang H (2011) Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields. J Mater Chem 21: 18220-18226

    Google Scholar 

  95. Deng D, Chen Y, Cao J, Tian J, Qian Z, Achilefu S, Gu Y (2012) High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem Mater 24: 3029–3037

    Google Scholar 

  96. Lu X, Zhuang Z, Peng Q, Li Y (2011) Controlled synthesis of wurtzite CuInS2 nanocrystals and their side-by-side nanorod assemblies. Cryst Eng Comm 13: 4039-4045

    Google Scholar 

  97. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y (2008) Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater 20: 6434–6443

    Google Scholar 

  98. Crooker SA, Barrick T, Hollingsworth JA, Klimov VI (2003) Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl Phys Lett 82: 2793

    Google Scholar 

  99. Chen B, Zhong H, Zhang W, Tan Z, Li Y, Yu C, Zhai T, Bando Y, Yang S, Zou B (2012) Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance. Adv Funct Mater 22: 2081-2088

    Google Scholar 

  100. Xie R, Rutherford M, Peng X (2009) Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc 131: 5691–5697

    Google Scholar 

  101. Kolny-Olesiak J, Weller H (2013) Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl Mater Interfaces 5: 12221-12237

    Google Scholar 

  102. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2004) Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J Phys Chem B 108: 12429-12435

    Google Scholar 

  103. Seo JT, Raut S, Abdel-Fattah M, Rice Q, Tabibi B, Rich R, Fudala R, Gryczynski I, Gryczynski Z, Kim WJ, Jung SS, Hyun R (2013) Time-resolved and temperature-dependent photoluminescence of ternary and quaternary nanocrystals of CuInS2 with ZnS capping and cation exchange. J Appl Phys 114: 094310

    Google Scholar 

  104. Komarala VK, Xie C, Wang Y, Xu J, Xiao M (2012) Time-resolved photoluminescence properties of CuInS2/ZnS nanocrystals: Influence of intrinsic defects and external impurities. J Appl Phys 111: 124314

    Google Scholar 

  105. Ueng HY, Hwang HL (1989) The defect structure of CuInS2. part I: Intrinsic defects. J Phys Chem Solids 50: 1297–1305

    Google Scholar 

  106. Aldakov D, Lefrançois A, Reiss P (2013) Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C 1: 3756–3776

    Google Scholar 

  107. Uehara M, Watanabe K, Tajiri Y, Nakamura H, Maeda H (2008) Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. J Chem Phys 129: 134709

    Google Scholar 

  108. Li L, Pandey A, Werder DJ, Khanal BP, Pietryga JM, Klimov VI (2011) Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J Am Chem Soc 133: 1176–1179

    Google Scholar 

  109. Zhong H, Lo SS, Mirkovic T, Li Y, Ding Y, Li Y, Scholes GD (2010) Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CuInS2 Nanocrystals and Their Size-Dependent Properties. ACS Nano 4: 5253–5262

    Google Scholar 

  110. Omata T, Tani Y, Kobayashi S, Otsuka-Yao-Matsuo S (2012) Quantum dot phosphors and their application to inorganic electroluminescence device. Thin Solid Films 520: 3829–3834

    Google Scholar 

  111. Park J, Kim S (2011) CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J Mater Chem 21: 3745-3750

    Google Scholar 

  112. Guo W, Chen N, Tu Y, Dong C, Zhnag B (2013) Synthesis of Zn-Cu-In-S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging. Theranostics 3: 99-108

    Google Scholar 

  113. Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem. Mater 21: 2422–2429

    Google Scholar 

  114. Pons T, Pic E, Lequeus N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B (2010) Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4: 2531–2538

    Google Scholar 

  115. Li T, Teng H (2010) Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J Mater Chem 20: 3656-3664

    Google Scholar 

  116. Lefrançois A, Luszczynska B, Pepin-Donat B, Lombard C, Bouthinon B, Verilhac M, Gromova M, Faure-Vincent J, Pouget P. Chandezon F, Sadki S, Reiss P (2015) Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells. Sci Rep 5: 7768

    Google Scholar 

  117. Kim HK, Suh MW, Kwon BH, Jang DS, Kim SW, Jeon DY (2011) In situ ligand exchange of thiol-capped CuInS2/ZnS quantum dots at growth stage without affecting luminescent characteristics. Journal of Colloid and Interface Science 363: 703–706

    Google Scholar 

  118. Pradhan N, Reifsnyder D, Xie R, Aldana J, Peng X (2007) J Am Chem Soc 129: 9500

    Google Scholar 

  119. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39: 4326-4354

    Google Scholar 

  120. Lee JY, Nam DH, Oh MH, Kim YS, Choi HS, Jeon DY, Park CB, Nam YS (2014) Serum-stable quantum dot-protein hybrid nanocapsules for optical bio-imaging. Nanotechnology 25: 175702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duk Young Jeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mnoyan, A., Lee, Y., Jung, H., Kim, S., Jeon, D.Y. (2016). Cadmium Free Quantum Dots: Principal Attractions, Properties, and Applications. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_15

Download citation

Publish with us

Policies and ethics