Skip to main content

Conservation of Arthropod Parasites: Restoring Crucial Ecological Linkages

  • Chapter
  • First Online:
Arthropod Diversity and Conservation in the Tropics and Sub-tropics

Abstract

Parasitic biodiversity is focussed as a key component of conservation targets based on their ecological roles in the present review. Arthropods adopt parasitism as one of the common strategies for survival. However, some parasites are threatened by not only direct factors such as environmental conditions but also by indirect ones such as the effect on their hosts/prey. Conservation of parasites would help to sustain evenness in arthropod communities. Diptera, Hymenoptera, and Siphonaptera are orders of insects, mites, and ticks implicated as vectors in transmission of diseases in human populations and agricultural ecosystem of tropics and subtropics. Recently, outbreak of Zika viral disease has been reported in over 12 countries. This comprehensive review will be of value to scientists, students, and policy makers for biodiversity management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afrane YA, Githeko AK, Yan G (2012) The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Ann N Y Acad Sci 1249:204–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Almberg ES, Cross PC, Dobson AP, Smith DW, Hudson PJ (2012) Parasite invasion following host reintroduction: a case study of Yellowstone’s wolves. Proc R Soc Lond Ser B Biol Sci 367:2840–2851

    Google Scholar 

  • Altizer S, Nunn CL, Lindenfors P (2007) Do threatened hosts have fewer parasites? A comparative study in primates. J Anim Ecol 76:304–314

    Article  PubMed  Google Scholar 

  • Arcari ML, Azzali G (2000) Ultrastructural and three-dimensional aspects of the lymphatic vessels of the absorbing peripheral lymphatic apparatus in Peyer’s patches of the rabbit. Anat Rec 258:71–79

    Article  PubMed  Google Scholar 

  • Artsob H (2000) Arthropod-borne disease in Canada: a clinician’s perspective from the ‘Cold zone’. Paediatr Child Health 5(4):206–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauchau V (1998) Comparison of parasitism level in two sympatric passerines: the pied flycatcher and the great tit. Écoscience 5:164–171

    Article  Google Scholar 

  • Bennett GF, Whitworth TL (1992) Host, nest, and ecological relationships of species of Protocalliphora (Diptera: Calliphoridae). Can J Zool 70:51–61

    Article  CAS  Google Scholar 

  • Berge TO, Lennette EH (1953) World distribution of Q fever: human, animal and arthropod infection. Am J Hyg 57(1):25–43

    Google Scholar 

  • Bigler F (1989) Quality assessment and control in entomophagus insects used for biological control. J Appl Entomol 108:390–400

    Article  Google Scholar 

  • Blanchet S, Rey O, Berthier P, Lek S, Loot G (2009) Evidence of parasite mediated disruptive selection on genetic diversity in a wild fish population. Mol Ecol 18:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102

    Article  PubMed  Google Scholar 

  • Byers JE, Altman J, Grosse AM, Huspeni TC, Maerz JC (2011) Using parasitic trematode larvae to quantity an elusive vertebrate host. Conserv Biol 25:85–93

    Article  PubMed  Google Scholar 

  • Cerutti F, Bigler F (1995) Quality assessment of Trichogramma brassicae in the laboratory. Entomologia Experimentaliset Applicata 75:19–26

    Article  Google Scholar 

  • Colwell RK, Dunn RR, Harris NC (2012) Coextinction and persistence of dependent species in a changing world. Annu Rev Ecol Evol Syst 43:183–203

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • deMeeûs T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18:247–251

    Article  Google Scholar 

  • Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W (2008) Homage to Linnaeus: how many parasites? How many hosts? Proc Natl Acad Sci U S A 105:11482–11489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists. Proc R Soc Lond 276:3037–3045, Series B, Containing papers of a Biological Character

    Article  Google Scholar 

  • Geevarghese G, Fernandes S, Kulkarni SM (1997) A checklist of Indian ticks (Acari: Ixodidae). Indian J Anim Sci 67:566–574

    Google Scholar 

  • Gómez A, Nichols ES, Perkins S (2012) Parasite conservation, conservation medicine, and ecosystem health. In: Aguirre AA, Daszak P, Ostfeld RS (eds) Conservation medicine: applied cases of ecological health. Oxford University Press, New York, pp 67–81

    Google Scholar 

  • Gompper ME, Williams ES (1998) Parasite conservation and the black-footed ferret recovery program. Conserv Biol 12:730–732

    Article  Google Scholar 

  • Griffith GW (2012) Do we need a global strategy for microbial conservation? Trends Ecol Evol 27:1–2

    Article  PubMed  Google Scholar 

  • Gubler DJ (2009) Vector-borne diseases. Rev Scientifiqueet Tech (Int Off Epizootics) 28(2):583–588

    Article  CAS  Google Scholar 

  • Hoogstraal H (1970) Symposium on current world research on tick-disease relationships and control of tick vectors of disease. Entomol Soc Am Misc Publ 6:327–372

    Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  • Huspeni TC, Lafferty KD (2004) Using larval trematodes that parasitize snails to evaluate a salt marsh restoration project. Ecol Appl 14:795–804

    Article  Google Scholar 

  • Jithendran KP, Natarajan M, Azad IS (2008) Crustacean parasites and their management in brackishwater finfish culture. Mar Finfish Aquac Netw 13:47–50

    Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  Google Scholar 

  • Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS (2004) Species co-extinctions and the biodiversity crisis. Science 305:1632–1634

    Article  CAS  PubMed  Google Scholar 

  • Kristensen TK, Brown DS (1999) Control of intermediate host snails for parasitic diseases – a threat to biodiversity in African freshwaters? Malacologia 41:379–391

    Google Scholar 

  • Kuhlamann U, Mills NS (1999) Comparative analysis of the reproductive attributes of three commercially produced trichogramma species (Hymenoptera: Trichogrammatidae). Biocontrol Sci Technol 9:335–346

    Article  Google Scholar 

  • Lafferty KD (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitol Today 13:251–255

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD (2012) Biodiversity loss decreases parasite diversity: theory and patterns. Philos Trans R Soc Lond B Biol Sci 367:2814–2827

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafferty KD, Kuris AM (2009) Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol 25:564–572

    Article  PubMed  Google Scholar 

  • Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialynas E (2007) VectorBase: a home for invertebrate vectors of human pathogens. Nucleic Acids Res 35(Database issue):D503–D505

    Article  CAS  PubMed  Google Scholar 

  • Li YL (1994) Worldwide use of Trichogramma for biological control on different crops a survey. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. Cab International, Oxon, pp 37–55

    Google Scholar 

  • Lively CM, Dybdahl MF, Jokela J, Osnas EE, Delph LF (2004) Host sex and local adaptation by parasites in a snail-trematode interaction. Am Nat 164:S6–S18

    Article  PubMed  Google Scholar 

  • Losey JE, Calvin DD (1995) Quality assessment of four commercially available species of trichogramma (Hymenoptera: Trichogrammatidae). J Econ Entomol 88:1243–1250

    Article  Google Scholar 

  • Marcogliese DJ (2004) Parasites: small players with crucial roles in the ecological theatre. Ecohealth 1:151–164

    Article  Google Scholar 

  • Marquardt WC, Demaree RS, Grieve RB (2000) Parasitology and vector biology, 2nd edn. Academic, San Diego, pp 1–13

    Google Scholar 

  • Meffe GK, Carroll RC, Groom MJ (2006) What is conservation biology? In: Groom MJ, Meffe GK, Carroll RC (eds) Principles of conservation biology. Sinauer Associates, Sunderland, pp 3–25

    Google Scholar 

  • Merino S, Potti J (1995) Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos 73:95–103

    Article  Google Scholar 

  • Meyer M (2012) A high coverage genome sequence from an archaic Denisovan individual. Science 338:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir ML, Vesk PA, Brennan KEC, Poulin R, Hughes L, Keith DA, McCarthy MA, Coates D (2012) Considering extinction of dependent species during translocation, ex situ conservation, and assisted migration of threatened hosts. Conserv Biol 26:199–207

    Article  PubMed  Google Scholar 

  • Moller AP (1997) Parasitism and the evolution of host life history. In: Clayton DH, Moore J (eds) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 105–127

    Google Scholar 

  • Neitz WO (1956) A consolidation of our knowledge of the transmission of tick-borne diseases. Onderstepoort 1. Vet Res 27:115–163

    Google Scholar 

  • Nichols E, Gómez A (2011) Conservation education needs more parasites. Biol Conserv 144:937–941

    Article  Google Scholar 

  • O’Neil RJ, Giles KL, Obryeki JJ, Mahr DL, Legaspi JC, Katorich K (1998) Evaluation of the quality of four commercially available natural enemies. Biol Control 11:1–8

    Article  Google Scholar 

  • Oatman ER (1966) Parasitization of Corn earworm eggs on sweet corn silk in southern California, with notes on larval infestations and Predators. J Econ Entomol 59:830–835

    Article  Google Scholar 

  • Oppliger A, Richner H, Christe P (1994) Effect of an ectoparasite on lay date, nest-site choice, and hatching success in the great tit (Parus major). Behav Ecol 5:130–134

    Article  Google Scholar 

  • Orr DB, Landis DA, Mutch DR, Manley GV, Stuby SA, King RL (1997) Ground cover influence on microclimate and trichogramma (Hymenoptera: Trichogrammatidae) augmentation in seed corn production. Environ Entomol 26:433–438

    Article  Google Scholar 

  • Pedersen AB, Jones KE, Nunn CL, Altizer S (2007) Infectious diseases and extinction risk in wild mammals. Conserv Biol 21:1269–1279

    Article  PubMed  Google Scholar 

  • Phillips M, Scheck J (1991) Parasitism in captive and reintroduced red wolves. J Wildl Dis 27:498–501

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75:277–293

    Article  CAS  PubMed  Google Scholar 

  • Powell FA (2011) Can early loss of affiliates explain the coextinction paradox? An example from Acacia-inhabiting psyllids (Hemiptera: Psylloidea). Biodivers Conserv 20:1533–1544

    Article  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton, p 237

    Google Scholar 

  • Rendell WB, Verbeek NAM (1996) Are avian ectoparasites more numerous in nest boxes with old nest material? Can J Zool 74:1819–1825

    Article  Google Scholar 

  • Reuter OM (1913) Lebensgewohnheiten und Instinkte der Insekten. Friendlander, Berlin

    Google Scholar 

  • Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, Paull SH, Raffel TR, Ruiz- Moreno D, Thomas MB (2011) Frontiers in climate change-disease research. Trends Ecol Evol 26:270–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SM (1996) Biological control with Trichogramma: advances, successes and potential of their use. Annu Rev Entomol 41:375–406

    Article  CAS  PubMed  Google Scholar 

  • Spratt DM (1997) Endoparasite control strategies: implications for biodiversity of native fauna. Int J Parasitol 27:173–180

    Article  CAS  PubMed  Google Scholar 

  • Stoker MGP, Marmion BP (1955) The spread of Q fever from animals to man. The natural history of a rickettsial disease. Bull WHO 13(78):1–806

    Google Scholar 

  • Summers K, McKeon S, Sellars J, Keusenkothen M, Morris J, Gloeckner D, Pressley C, Price B, Snow H (2003) Parasitic exploitation as an engine of diversity. Biol Rev 78:639–675

    Article  PubMed  Google Scholar 

  • Tomás G, Merino S, Moreno J, Morales J (2007) Consequences of nest reuse for parasite burden and female health and condition in blue tits, Cyanistes caeruleus. Anim Behav 73:805–814

    Article  Google Scholar 

  • Tompkins DM, Greenman JV, Hudson PJ (2001) Differential impact of a shared nematode parasite on two game bird hosts: implications for apparent competition. Parasitology 122:187–193

    Article  CAS  PubMed  Google Scholar 

  • Topalis P, Lawson D, Collins FH, Louis C (2008) How can ontologies help vector biology? Trends Parasitol 24:249–252

    Article  CAS  PubMed  Google Scholar 

  • Toups MA, Kitchen A, Light JE, Reed DL (2011) Origin of clothing lice indicates early clothing use by anatomically modern humans in Africa. Mol Biol Evol 28:29–32

    Article  CAS  PubMed  Google Scholar 

  • Wardhaugh KG, Holter P, Longstaff B (2001) The development and survival of three species of coprophagous insect after feeding on the faeces of sheep treated with controlled-release formulations of ivermectin or albendazole. Aust Vet J 79:125–132

    Article  CAS  PubMed  Google Scholar 

  • Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232

    Article  CAS  PubMed  Google Scholar 

  • Wheeler QD (Ed) (2008) The new taxonomy, systematics association special publication. CRC, Boca Raton, pp 76:33–53

    Google Scholar 

  • Wheeler QD, Valdecasa AG (2010) Taxonomy: add a human touch too. Nature 467:788

    PubMed  Google Scholar 

  • Whiteman NK, Parker PG (2005) Using parasites to infer host population history: a new rationale for parasite conservation. Anim Conserv 8:175–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jayashankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jayashankar, M., Prasad, S.R.A., Kandakoor, S.B. (2016). Conservation of Arthropod Parasites: Restoring Crucial Ecological Linkages. In: Chakravarthy, A., Sridhara, S. (eds) Arthropod Diversity and Conservation in the Tropics and Sub-tropics. Springer, Singapore. https://doi.org/10.1007/978-981-10-1518-2_3

Download citation

Publish with us

Policies and ethics