Skip to main content

Part of the book series: Modern Otology and Neurotology ((MODOTOL))

Abstract

Most studies on development of the human auditory system and hearing loss have to date focused on the sensory apparatus, the cochlea. With advancements in magnetic resonance imaging (MRI), there has recently been increasing interest in the subject of cochlear nerve deficiency (CND) and dysfunction. Cochlear nerve deficiency (CND) amongst individuals with congenital sensorineural hearing loss (SNHL) is not as rare as previously thought, with prevalence as high as 18–21 % reported amongst cochlear implant recipients. Cochlear nerve (CN) morphogenesis is a complex process involving cell populations from two disparate progenitors of the otic placode and neural crest cells. In the first trimester, the basic foundation of the auditory pathway is laid down, with the vestibulocochlear ganglion cells delaminating from the otocyst and establishing peripheral and central connections with the developing cochlea and brainstem, respectively. The second trimester is a period of proliferation, growth and myelination. As the number of axons is pruned back closer to the adult level, myelination begins in the intra-cochlear portion of CN and extends proximally. In the third trimester, further maturation of the neuronal connections in conjunction with paralleled development of the cochlea and brainstem leads to emergence of foetal responses to auditory stimuli. Based on the currently available knowledge of the embryological development of CN, various phenotypes of CND are discussed. It is hoped that better understanding of CN ontogenesis will not only lead to further refinement of auditory implant candidacy but also open doors to potential regeneration therapies such as stem cell therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adunka OF, Roush PA, Teagle HFB, Brown CJ, Zdanski CJ, Jewells V, et al. Internal auditory canal morphology in children with cochlear nerve deficiency. Otol Neurotol. 2006;27(6):793–801.

    Article  PubMed  Google Scholar 

  2. McClay JE, Booth TN, Parry DA, Johnson R, Roland P. Evaluation of pediatric sensorineural hearing loss with magnetic resonance imaging. Arch Otolaryngol Head Neck Surg. 2008;134(9):945–52. doi:10.1001/archotol.134.9.945.

    Article  PubMed  Google Scholar 

  3. Wu CM, Lee LA, Chen CK, Chan KC, Tsou YT, Ng SH. Impact of cochlear nerve deficiency determined using 3-dimensional magnetic resonance imaging on hearing outcome in children with cochlear implants. Otol Neurotol. 2015;36(1):14–21. doi:10.1097/MAO.0000000000000568.

    CAS  PubMed  Google Scholar 

  4. Rosenbluth J. The fine structure of acoustic ganglia in the rat. J Cell Biol. 1962;12:329–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harrison RG. Neuroblast versus sheath cell in the development of peripheral nerves. J Comp Neurol. 1924;37:123–205.

    Article  Google Scholar 

  6. Yntema CL. An experimental study on the origin of the sensory neurones and sheath cells of the IXth and Xth cranial nerves in Amblystoma punctatum. J Exp Zool. 1943;92:93–119.

    Article  Google Scholar 

  7. D’Amico-Martel A, Noden D. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat. 1983;166:445–68.

    Article  PubMed  Google Scholar 

  8. Fekete DM, Wu DK. Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol. 2002;12:35–42.

    Article  CAS  PubMed  Google Scholar 

  9. Barald KF, Kelley MW. From placode to polarization: new tunes in inner ear development. Development. 2004;131:4119–30.

    Article  CAS  PubMed  Google Scholar 

  10. Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, et al. Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10. J Neurochem. 2010;114:1827–39. doi:10.1111/j.1471-4159.2010.06897.x.

    Article  CAS  PubMed  Google Scholar 

  11. Freyer L, Aggarwal V, Morrow BE. Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development. 2011;138:5403–14. doi:10.1242/dev.069849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA. Cochleovestibular nerve development is integrated with migratory neural crest cells. Dev Biol. 2014;385(2):200–10. doi:10.1016/j.ydbio.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  13. O’Rahilly R. The early development of the otic vesicle in staged human embryos. J Embryol Exp Morphol. 1963;11:741–55.

    PubMed  Google Scholar 

  14. Ladher RK, O’Neill P, Begbie J. From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development. 2010;137(11):1777–85. doi:10.1242/dev.040055.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Streit A. Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res. 2013;297:3–12. doi:10.1016/j.heares.2012.11.018.

    Article  PubMed  Google Scholar 

  16. Cooper ERA. The development of the human auditory pathway from the cochlear ganglion to the medial geniculate body. Acta Anat (Basel). 1948;5(1–2):99–122.

    Article  Google Scholar 

  17. Altman J, Bayer S. Development of the cranial nerve ganglia and related nuclei in the rat. Berlin: Springer; 1982.

    Book  Google Scholar 

  18. Moore JK, Linthicum Jr FH. The human auditory system: a timeline of development. Int J Audiol. 2007;46:460–78.

    Article  PubMed  Google Scholar 

  19. Li Y, Yang J, Liu J, Wu H. Restudy of malformations of the internal auditory meatus, cochlear nerve canal and cochlear nerve. Eur Arch Otorhinolaryngol. 2015;272(7):1587–96. doi:10.1007/s00405-014-2951-4.

    Article  PubMed  Google Scholar 

  20. Pujol R, Lavigne-Rebillard M. Early stages of innervation and sensory cell differentiation in the human organ of Corti. Acta Otolaryngol Suppl. 1985;423:43–50.

    Article  CAS  PubMed  Google Scholar 

  21. Fritzsch B, Silos-Santiago I, Bianchi LM, Fariñas I. The role of neurotrophic factors in regulating the development of inner ear innervation. Trends Neurosci. 1997;20:159–64.

    Article  CAS  PubMed  Google Scholar 

  22. Bernd P. The role of neurotrophins during early development. Gene Expr. 2008;14:241–50.

    Article  PubMed  Google Scholar 

  23. Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci. 2002;25:51–101.

    Article  CAS  PubMed  Google Scholar 

  24. McPhee JR, Van De Water TR. Epithelial-mesenchymal tissue interactions guiding otic capsule formation: the role of the otocyst. J Embryol Exp Morphol. 1986;97:1–24.

    CAS  PubMed  Google Scholar 

  25. Glastonbury CM, Davidson HC, Harnsberger HR, Butler J, Kertesz TR, Shelton C. Imaging findings of cochlear nerve deficiency. AJNR Am J Neuroradiol. 2002;23:635–43.

    PubMed  Google Scholar 

  26. Lavigne-Rebillard M, Pujol R. Hair cell innervation in the fetal human cochlea. Acta Otolaryngol. 1988;105(5–6):398–402.

    Article  CAS  PubMed  Google Scholar 

  27. Ray B, Roy TS, Wadhwa S, Roy KK. Development of the human fetal cochlear nerve: a morphometric study. Hear Res. 2005;202(1–2):74–86.

    Article  PubMed  Google Scholar 

  28. Moore JK, Linthicum Jr FH. Myelination of the human auditory nerve: different time courses for Schwann cell and glial myelin. Ann Otol Rhinol Laryngol. 2001;110:655–61.

    Article  CAS  PubMed  Google Scholar 

  29. Birnholz JC, Benecerraf BR. The development of human fetal hearing. Science. 1983;222(4623):516–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kuhlman KA, Burns KA, Depp R, Sabbagha RE. Ultrasonic imaging of normal fetal response to external vibratory acoustic stimulation. Am J Obstet Gynecol. 1988;158(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  31. Starr A, Amlie RN, Martin WH, Sanders S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics. 1977;60(6):831–9.

    CAS  PubMed  Google Scholar 

  32. Krumholz A, Felix JK, Goldstein PH, McKenzie E. Maturation of the brainstem auditory evoked potentials in premature infants. Electroencephalogr Clin Neurophysiol. 1985;62(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  33. Hafner H, Pratt H, Blazer S, Sujov P. Critical ages in brainstem development revealed by neonatal 3-channel Lissajous’ trajectory of auditory brainstem evoked potentials. Hear Res. 1993;66(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  34. Casselman JW, Offeciers FE, Govaerts PJ, Kuhweide R, Geldof H, Somers T, et al. Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology. 1997;202:773–81.

    Article  CAS  PubMed  Google Scholar 

  35. Buchman CA, Roush PA, Teagle HFB, Brown CJ, Zdanski CJ, Grose JH. Auditory neuropathy characteristics in children with cochlear nerve deficiency. Ear Hear. 2006;27:399–408.

    Article  PubMed  Google Scholar 

  36. Hossain WA, Brumwell CL, Morest DK. Sequential interactions of fibroblast growth factor-2, brain-derived neurotrophic factor, neurotrophin-3, and their receptors define critical periods in the development of cochlear ganglion cells. Exp Neurol. 2002;175:138–51.

    Article  CAS  PubMed  Google Scholar 

  37. Van De Water TR. Effects of removal of the statoacoustic ganglion complex upon the growing otocyst. Ann Otol Rhinol Laryngol. 1976;85:2–31.

    Article  CAS  PubMed  Google Scholar 

  38. Corwin JT, Cotanche DA. Development of location-specific hair cell stereocilia in denervated embryonic ears. J Comp Neurol. 1989;288(4):529–37.

    Article  CAS  PubMed  Google Scholar 

  39. Nelson EG, Hinojosa R. Aplasia of the cochlear nerve: a temporal bone study. Otol Neurotol. 2001;22(6):790–5.

    Article  CAS  PubMed  Google Scholar 

  40. Lefebvre PP, Leprince P, Weber T, Rigo JM, Delree P, Moonen G. Neuronotrophic effect of developing otic vesicle on cochleo-vestibular neurons: evidence for nerve growth factor involvement. Brain Res. 1990;507(2):254–60.

    Article  CAS  PubMed  Google Scholar 

  41. Jackler RK, Luxford WM, House WF. Sound detection with the cochlear implant in five ears of four children with congenital malformations of the cochlea. Laryngoscope. 1987;97(3 Pt 2 Suppl 40):15–7.

    CAS  PubMed  Google Scholar 

  42. Shelton C, Luxford WM, Tonokawa LL, Lo WW, House WF. The narrow internal auditory canal in children: a contraindication to cochlear implants. Otolaryngol Head Neck Surg. 1989;100:227–31.

    Article  CAS  PubMed  Google Scholar 

  43. Govaerts PJ, Casselman J, Daemers K, De Beukelaer C, Yperman M, De Ceulaer G. Cochlear implants in aplasia and hypoplasia of the cochleovestibular nerve. Otol Neurotol. 2003;24:887–91.

    Article  CAS  PubMed  Google Scholar 

  44. Yan F, Li J, Xian J, Wang Z, Mo L. The cochlear nerve canal and internal auditory canal in children with normal cochlea but cochlear nerve deficiency. Acta Radiol. 2013;54(3):292–8.

    Article  PubMed  Google Scholar 

  45. Tang TP, McPherson B, Yuen KC, Wong LL, Lee JS. Auditory neuropathy/auditory dys-synchrony in school children with hearing loss: frequency of occurrence. Int J Pediatr Otorhinolaryngol. 2004;68:175Y83.

    Article  Google Scholar 

  46. Berlin CI, Hood LJ, Morlet T, Wilensky D, Li L, Mattingly KR, et al. Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol. 2010;49(1):30–43.

    Article  PubMed  Google Scholar 

  47. Roche JP, Huang BY, Castillo M, Bassim MK, Adunka OF, Buchman CA. Imaging characteristics of children with auditory neuropathy spectrum disorder. Otol Neurotol. 2010;31:780–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Walton J, Gibson WP, Sanli H, Prelog K. Predicting cochlear implant outcomes in children with auditory neuropathy. Otol Neurotol. 2008;29:302–9.

    Article  PubMed  Google Scholar 

  49. Huang BY, Roche JP, Buchman CA, Castillo M. Brain stem and inner ear abnormalities in children with auditory neuropathy spectrum disorder and cochlear nerve deficiency. AJNR Am J Neuroradiol. 2010;31(10):1972–9.

    Article  CAS  PubMed  Google Scholar 

  50. Levi J, Ames J, Bacik K, Drake C, Morlet T, O’Reilly RC. Clinical characteristics of children with cochlear nerve dysplasias. Laryngoscope. 2013;123(3):752–6. doi:10.1002/lary.23636.

    Article  PubMed  Google Scholar 

  51. Thai-Van H, Fraysse B, Berry I, Berges C, Deguine O, Honegger A, et al. Functional magnetic resonance imaging may avoid misdiagnosis of cochleovestibular nerve aplasia in congenital deafness. Am J Otol. 2000;21:663–70.

    CAS  PubMed  Google Scholar 

  52. Zanetti D, Guida M, Barezzani MG, Campovecchi C, Nassif N, Pinelli L, et al. Favorable outcome of cochlear implant in VIIIth nerve deficiency. Otol Neurotol. 2006;27:815–23.

    Article  PubMed  Google Scholar 

  53. Kutz Jr JW, Lee KH, Isaacson B, Booth TN, Sweeney MH, Roland PS. Cochlear implantation in children with cochlear nerve absence or deficiency. Otol Neurotol. 2011;32:956–61.

    Article  PubMed  Google Scholar 

  54. Birman CS, Powell HR, Gibson WP, Elliott EJ. Cochlear implant outcomes in cochlea nerve aplasia and hypoplasia. Otol Neurotol. 2016;37(5):438–45. doi:10.1097/MAO.0000000000000997.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irumee Pai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pai, I. (2017). Embryology of Cochlear Nerve and Its Deficiency. In: Kaga, K. (eds) Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency. Modern Otology and Neurotology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1400-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1400-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1399-7

  • Online ISBN: 978-981-10-1400-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics