Skip to main content

Biomonitoring and Remediation by Plants

  • Chapter
  • First Online:
Plant Responses to Air Pollution

Abstract

Dealing with environmental pollution promises to be one of man’s most urgent problems in the years to come. This chapter deals with different components of air pollution biomonitoring and their remediation by using different plant species of herbs, shrubs, and trees as green technology. Various methods of biomonitoring apply the whole or part of an organism to measure the exposure of a plant as well as accumulation of a pollutant. They have the great advantage to show clearly the effects of air pollutants as bioindicator plants. Bioindicators can reveal the impact and the cumulative effects of different pollutants. Phytoremediation is a set of processes such as rhizodegradation, phytostabilization, phytofiltration, phytoextraction, phytodegradation, and phytovolatilization. Through these processes plants remediate the pollutants, partially and sustainably from the atmosphere. Atmospheric gases (NO2, SO2, O3, etc.), heavy metals, and VOC pollutants are reduced by absorbing and metabolizing them into less toxic compounds by site-specific plants or through the changes in the plant genome by overexpression of pollution-fighting genes through genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mung bean grown in peri-urban areas of Varanasi. Water Air Soil Pollut 169:239–254

    Article  CAS  Google Scholar 

  • Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650

    Article  Google Scholar 

  • Allen S, Raven JA, Sprent JI (1988) The role of long-distance transport in intracellular pH regulation in Phaseolus vulgaris growth with ammonium or nitrate as nitrogen source, or nodulated. J Exp Bot 39:513–528

    Article  CAS  Google Scholar 

  • Anonymous (2007) Air quality strategy for England, Scotland, Wales and Northern Ireland. http://www.official-documents.gov.uk/document/cm71/7169/7169

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Ashmore MR, Marshall FM (1999) Ozone impacts on agriculture: an issue of global concern. Adv Bot Res 29:32–49

    Google Scholar 

  • Beckett KP, Freer-Smith PH, Taylor G (2000) Particulate pollution capture by urban trees: effect of species and windspeed. Glob Chang Biol 6:995–1003

    Article  Google Scholar 

  • Bobbink R, Heil GW, Raessen MBAG (1992) Atmospheric deposition and canopy exchange processes in heathland ecosystems. Environ Pollut 75:29–41

    Article  CAS  PubMed  Google Scholar 

  • Bobbink R, Boxman D, Fremstad E, Heil G, Houdijk A, Roelofs J (1993) Nitrogen eutrophication and critical load for nitrogen based upon changes in flora and fauna in semi-natural terrestrial ecosystems. In: Critical loads for nitrogen, Proceedings of a UN-ECE workshop at Lo¨keberg, Sweden. 6–10 April 1992, Nordic Council of Ministers, Copenhagen, Denmark, pp 111–159

    Google Scholar 

  • Brethour C, Watson G, Sparling B, Bucknell D, Moore T (2007) Literature review of documented health and environmental benefits derived from ornamental horticulture products. Final report. George Morris Centre. http://www.Deenenlandscaping.Com/UserFile/file/Morris_Report.pdf

  • Brown SK (1997) Volatile organic compounds in indoor air: sources and control. Chem Aust 64:10–13

    CAS  Google Scholar 

  • Burchett M, Torpy F, Tarran J (2008) Interior plants for sustainable facility ecology and workplace productivity. In: Proceeding of Ideaction’08–Enabling Sustainable Communities; Gold Coast, Qld, 2008

    Google Scholar 

  • Burken JG, Shanks JV, Thomposn PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, DC, pp 239–275

    Google Scholar 

  • Chaturvedi RK, Prasad S, Rana S, Obaidullah SM, Pandey V, Singh H (2013) Effect of dust load on the leaf attributes of the tree species growing along the roadside. Environ Monit Assess 185:383–391. doi:10.1007/s10661-012-2560-x

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Joshi PC (2010) Effect of ambient air pollutants on wheat and mustard crops growing in the vicinity of urban and industrial areas. N Y Sci J 3:52–60

    Google Scholar 

  • Chhotu DJ, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    Google Scholar 

  • Davidson CI, Wu C-L (1990) Dry deposition of particles and vapors. In: Lindberg SE, Page AL, Norton SA (eds) Acidic precipitation. Springer, New York, pp 103–215

    Chapter  Google Scholar 

  • Dhir B, Sharma MP, Mahmooduzzafar, Iqbal M (1999) Form and function of Achyranthes aspera Linn. under air pollution stress. J Environ Biol 20:19–23

    Google Scholar 

  • Davies DD (1986) The fine control of cytosolic pH. Physiol Plant 67:702–706

    Article  CAS  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, … Meilan R (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc. Natl Acad Sci 104:16816–16821

    Google Scholar 

  • El-Sadek M, Koriesh E, Fujii E, Moghazy E, Abd Elfatah Y (2012) Correlation between some components of interior plants and their efficiency to reduce formaldehyde, nitrogen and sulfur oxides from indoor air. Int Res J Plant Sci 3:222–229

    Google Scholar 

  • Fluckinger W, Oertli JJ, Fluckiger W (1979) Relationship between stomatal diffusive resistance and various applied particle sizes on leaf surface. Z Pflanzenphysiol 91:773–775

    Google Scholar 

  • Fowler D, Cape JN, Unsworth MH, Crowther HMJM et al (1989) Deposition of atmospheric pollutants on forests. Philos Trans R Soc London B Biol Sci 324:247–265

    Article  Google Scholar 

  • Ghouse AKM, Khan FA (1984) Effect of air pollutants on the growth responses of Solanum nigrum L. Acta Bot Ind 12:93–94

    Google Scholar 

  • Giese M, Bauer-Doranth U, Langebartels C, Sandermann H (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104:1301–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godish Tand Guindon C (1989) An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environ Pollut 89(61):13–20

    Article  Google Scholar 

  • Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J 19:75–80

    Article  CAS  PubMed  Google Scholar 

  • GrodzinskaJurczak M, SzarekLukaszewska G (1999) Evaluation of SO2 and NO2 related degradation of coniferous forest stands in Poland. Sci Total Environ 241:115

    Google Scholar 

  • Gupta GP, Singh S, Kumar B, Kulshrestha UC (2015a) Industrial dust sulphate and its effects on biochemical and morphological characteristics of Morus (Morus alba) plant in NCR Delhi. Environ Monit Assess 187:67

    Article  PubMed  Google Scholar 

  • Gupta GP, Kumar B, Singh S, Kulshrestha UC (2015b) Urban climate and its effect on biochemical and morphological characteristics of Arjun (Terminalia arjuna) plant in National Capital Region Delhi. Chem Eco1. http://dx.doi.org/10.1080/02757540.2015.10432 86

  • Gupta GP, Kumar B, Singh S, Kulshrestha UC (2015c). Chemistry and impact of urban atmospheric dust on two medicinal plants during different seasons in NCR Delhi. Aero Air Qual Res-Index. 10.4209/aaqr.2015.04.0272

  • Haapala H, Goltsova N, Seppala R, Huttunen S, Kouki J, Lampp J, Popovichev B (1996) Ecological condition of forests around the eastern part of the Gulf of Finland. Environ Pollut 91:253–265

    Article  CAS  PubMed  Google Scholar 

  • He H, Wang Y, Ma Q, Ma J, Chu B, Ji D, Tang G, Liu C, Zhang H, Hao J (2014) Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Sci Rep 4:4172. doi:10.1038/srep04172

    PubMed  PubMed Central  Google Scholar 

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied route to changes? Environ Pollut 155:453–463

    Article  CAS  PubMed  Google Scholar 

  • Heck WW (1966) The use of plants as indicators of air pollution. Air Water Pollut Intern 10:99–111

    CAS  Google Scholar 

  • Heggestad HE, Darley EF (1969) Plants as indicators of the air pollutants ozone and PAN. In: Proceedings of the First European Congress on the influence of air pollution on plants and animals. Wageningen, 1968. Pudoc, Wageningen, pp 329–335

    Google Scholar 

  • Ibrahim A, Abd Elaziz F, Toma Z, Zhang J (2008) Indoor air pollution and child health in a rural area in Egypt. Epidemiology 19:377

    Google Scholar 

  • Innes JL (1995) Influence of air pollution on the foliar nutrition of conifers in Great Britain. Environ Pollut 88:183–192

    Article  CAS  PubMed  Google Scholar 

  • Keymeulen R, Schamp N, Langenhove HV (1995) Uptake of gaseous toluene in plant leaves: a two compartment model. Chemotherapy 31:3961–3975

    CAS  Google Scholar 

  • Kim E, Kalman D, Larson T (2000) Dry deposition of large, airborne particles onto a surrogate surface. Atmos Environ 34:2387–2397

    Article  CAS  Google Scholar 

  • Klumpp A, Ansel W, Klumpp G, Breuer J, Vergne P, Sanz MJ, … Calatayud V (2009) Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures. Atmos Environ 43:329–339

    Google Scholar 

  • Kulshrestha U (2013) Acid rain. In: Jorgensen SE (ed) Encyclopedia of environmental management. Taylor & Francis, New York, pp 8–22

    Google Scholar 

  • Kulshrestha MJ, Kulshrestha UC, Parashar DC, Vairamani M (2003) Estimation of SO4 contribution by dry deposition of SO2 onto the dust particles in India. Atmos Environ 37:30573063

    Google Scholar 

  • Kumar RS, Arumugam T, Anandakumar CR, Balakrishnan S, Rajavel DS (2013) Use of plant species in controlling environmental pollution-a review. Bull Env Pharmacol Life Sci 2:52–63

    Google Scholar 

  • Laisk A, Pfanz H, Heber U (1988) Sulfur dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. II Consequences of SO2 uptake as revealed by computer analysis. Planta 173:241–252

    Article  CAS  PubMed  Google Scholar 

  • Legge AH, Krupa SV (2002) Effects of sulphur dioxide. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, West Sussex, pp 130–162

    Google Scholar 

  • Maatoug M (2010) Cartographie de la pollution atmosphérique par le plomb d’origine routière à l’aide de transplantation d’un lichen bioaccumulateur Xanthoria parietina dans la ville de Tiaret (Algérie). Rev Pollut Atmos 205:93–101

    CAS  Google Scholar 

  • Mackay D, Foster KL, Patwa Z, Webster E (2006) Chemical partitioning to foliage: the contribution and legacy of Davide Calamari. Environ Sci Pollut Res 30:786–791

    Google Scholar 

  • Manninen S, Huttunen S (1995) Scots pine needles as bioindicators of sulphur deposition. Can J For Res 25:1559–1569

    Article  CAS  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Morikawa H, Erkin ÖC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Mosaddegh MH, Jafarian A, Ghasemi A, Mosaddegh A (2014) Phytoremediation of benzene, toluene, ethylbenzene and xylene contaminated air by Dracaena deremensis and Opuntia microdasys plants. J Environ Health Sci Eng. doi:10.1186/2052-336X-12-39

    PubMed  PubMed Central  Google Scholar 

  • Nandy A, Talapatra SN, Bhattacharjee P, Chaudhuri P, Mukhopadhyay A (2014) Assessment of morphological damages of leaves of selected plant species due to vehicular air pollution, Kolkata, India. Int Lett Nat Sci 9:76–91

    Article  Google Scholar 

  • Nighat F, Mahmooduzzafar MI (2000) Stomatal conductance, photosynthetic rate and pigment content in Ruellia tuberosa leaves as affected by coal-smoke pollution. Biol Plant 43:263–267

    Article  CAS  Google Scholar 

  • Novoderzhikina YG, Andrianova LA, Zheldakkova GG (1966) Effect of plantings on the sanitary and hygienic conditions of densely polluted settlement. In: Nuttonson M (ed) AICE survey of USSR, vol 2. American Institute of Cropecology, Silver Spring, pp 25–31

    Google Scholar 

  • Nowak DJ, Craneand DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green 4:115–123

    Article  Google Scholar 

  • Nugrahani P, Prasetyawati ET, Sugijanto PH (2012) Ornamental shrubs as plant palettes elements and bioindicators based on air pollution tolerance index in Surabaya city, Indonesia. Asian J Exp Biol Sci 3:298–302

    CAS  Google Scholar 

  • Nylander W (1866) Les lichens du Jardin de Luxembourg. Bull Soc Bot France 13:364–371

    Article  Google Scholar 

  • Pitcairn CER, Leith ID, Sheppard LJ, Sutton MA, Fowler D, Munro RC, Tang S, Wilson D (1998) The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environ Pollut 102:41–48

    Article  CAS  Google Scholar 

  • Prescod AW (1990) Growing indoor plants as air purifiers. Pappus 9:13–20

    Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    Article  CAS  Google Scholar 

  • Rai A, Kulshrestha K, Srivastava PK, Mohanty CS (2010) Leaf surface structure alterations due to particulate pollution in some common plants. Environment 30:18–23

    Google Scholar 

  • Rai R, Rajput M, Agrawal M, Agrawal SB (2011) Gaseous air pollutants: a review on current and future trends of emissions and impact on agriculture. J Sci Res 55:77–102

    Google Scholar 

  • Ramge P, Badeck FW, Plochl M, Kohlmaier GH (1993) Apoplastic antioxidants as decisive elimination factors within the uptake process of nitrogen dioxide into leaf tissues. New Phytol 125:771–785

    Article  CAS  Google Scholar 

  • Rocha DI, Luzimar CS, Eduardo GP, Bruno FS, Elisa RG, Marco AO (2014) Early detection of injuries in leaves of clusia hilariana schltdl. (clusiaceae) caused by particulate deposition of iron. Rev Árvore Viçosa MG 38:423–432

    Article  Google Scholar 

  • Rodriguez JH, Pignata ML, Fangmeier A, Klumpp A (2010) Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany). Chemosphere 80:208–215

    Article  CAS  PubMed  Google Scholar 

  • Saquib M, Khan FA (1999) Air pollution impacts on the growth and reproductive behaviour of mustard. J Environ Biol 20:107–110

    CAS  Google Scholar 

  • Sawidis T, Krystallidis P, Veros D, Chettri M (2012) A study of air pollution with heavy metals in Athens city and Attica basin using evergreen trees as biological indicators. Biol Trace Elem Res 148:396–408

    Article  CAS  PubMed  Google Scholar 

  • Schönbeck H, Buck M, Van Haut H, Scholl G (1970) Biologische Meßverfahren für Luftverunreinigungen. VDI Ber 149:225–234

    Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley-IntersciencePress, New York

    Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation: review. Biol Plant 51:618–634

    Article  CAS  Google Scholar 

  • Shoun H, Kim DH, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 73:277–281

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2014) Chemistry and source identification of fine aerosols and role of their precursors in outdoor and indoor rural environment in North India, PhD thesis. Jawaharlal Nehru University, New Delhi

    Google Scholar 

  • Stevovic S, Mikovilovic VS, Calic DD (2010) Environmental impact on morphological and anatomical structure of Tansy. Afr J Biotechnol 9:2413–2421

    Google Scholar 

  • Takahashi M, Sasaki Y, Ida S, Morikawa H (2001) Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in Arabidopsis. Plant Physiol 126:731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teklemariam TA, Sparks JP (2006) Leaf fluxes of NO and NO2 in four herbaceous plant species: the role of ascorbic acid. Atmos Environ 40:2235–2244

    Article  CAS  Google Scholar 

  • Tingey DT (1989) Bioindicators in air pollution research – applications and constraints. Biologic markers of air-pollution stress and damage in forests. National Academies Press, Washington, DC, pp 73–80. ISBN 978-0-309-07833-7

    Google Scholar 

  • Ugrekhelidze D, Korte F, Kvesitadze G (1997) Uptake and transformation of benzene and toluene in plant tissues. Ecotoxicol Environ Saf 37:24–29

    Article  CAS  PubMed  Google Scholar 

  • Tomasevic M, Anicic M (2010) Trace element content in urban tree leaves and SEM-EDX characterization of deposited particles. Phys Chem Technol 8:1–13

    CAS  Google Scholar 

  • Van RA (1969) The use of indicator plants to estimate air pollution by SO2 and HF. In: Proceedings of the First European Congress on the influence of air pollution on plants and animals. Wageningen, 1968. Pudoc Wageningen, pp 319–328

    Google Scholar 

  • Vaucheret H, Kronenberger J, Lepingle A, Vilaine F, Boutin JP, Caboche M (1992) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2:559–569

    CAS  PubMed  Google Scholar 

  • Wahid A (2006) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new varieties in Pakistan. Sci Total Environ 371:304–313

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Tiedmann V (2002) Evidence for oxidative stress involved in physiological leaf spot formation in winter and spring barley. Phytopathology 92:145–155

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Pennisi SV, Son K, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. Hortic Sci 44:1377–1381

    Google Scholar 

  • Yoneyama T, Kim HY, Morikawa H, Srivastava HS (2002) Metabolism and detoxification of nitrogen dioxide and ammonia in plants. In: Omasa K et al (eds) Air pollution and plant biotechnology–prospects for phytomonitoring and phytoremediation. Springer, Tokyo, pp 221–234. 31

    Chapter  Google Scholar 

  • Zhai G (2011) Phytoremediation: right plants for right pollutants. J Bioremediation Biodegrad 2:3. http://dx.doi.org/10.4172/2155-6199.1000102e

    Google Scholar 

  • Zumft G (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Kulshrestha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gupta, G.P., Kulshrestha, U. (2016). Biomonitoring and Remediation by Plants. In: Kulshrestha, U., Saxena, P. (eds) Plant Responses to Air Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-10-1201-3_11

Download citation

Publish with us

Policies and ethics